
NLP
夹克牛
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TF-IDF解释及应用
TF: 该词在某篇文档中出现的频率,TF(w,d),值越大,表明该词在文档中的重要性越高IDF: 单词普遍性的度量,如果该值越小,则该词认为非常普遍,如果该值很大,则认为该词在其他文档中很少出现,可以用该词来进行分类。TF-IDF的主要思想是:如果某个单词在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。应用: (1) 搜索引擎在搜索引原创 2017-08-18 09:46:39 · 891 阅读 · 0 评论 -
word2vec
word2vec demo: 里面的具体的解释还得后面分析#encoding:utf-8#@Time : 2017/8/18 11:48#@Author : JackNiu# 引入 word2vecfrom gensim.models import word2vec# 引入日志配置import logginglogging.basicConfig(format='%(asctime)s :原创 2017-08-18 13:17:17 · 536 阅读 · 0 评论