首发精神分裂症伴幻听患者的脑网络异常:静息态功能影像研究揭秘
精神分裂症是一种严重的精神障碍,其中听觉言语幻听(AVH) 是最突出的症状之一,约 60%-90% 的患者会受其困扰。这些 “凭空出现的声音” 不仅影响患者的生活质量,更是诊断精神分裂症的核心依据之一。但长期以来,幻听背后的脑机制始终是未解之谜。
近期,发表在《Radiology》的一项研究(Cui et al., 2017)通过静息态功能磁共振(fMRI)技术,首次从脑网络水平揭示了首发未治疗精神分裂症患者中,伴幻听与不伴幻听患者的脑活动差异。这项研究为理解幻听的神经基础提供了全新视角,甚至可能为未来的诊断和治疗开辟新路径。
研究背景:为什么关注 “静息态网络”?
人的大脑即使在休息时,也存在高度协调的神经活动,这些自发活动形成的脑区连接被称为静息态网络(RSNs)。它们就像大脑的 “基础电路”,负责维持基本功能,而精神分裂症等疾病常伴随这些网络的异常。
过去的研究发现,精神分裂症患者的 RSNs 存在紊乱,但针对首发未治疗且伴幻听患者的特异性网络异常研究较少。由于药物可能改变脑活动,研究未接受治疗的患者能更真实地反映疾病本身的神经病理变化。
因此,这项研究的核心目标是:通过分析静息态网络,找到与幻听(AVH)直接相关的脑活动模式,揭示幻听的神经机制。
材料与方法:严谨设计确保结果可靠
要回答这个科学问题,研究团队采用了严格的实验设计和先进的影像分析技术,具体如下:
1. 参与者:精准分组,排除干扰
研究共纳入 3 组参与者,均为汉族,且排除了神经疾病、药物滥用、MRI 禁忌症等干扰因素:
- 伴 AVH 的首发精神分裂症患者:17 人,符合《精神疾病诊断与统计手册(第四版)》标准,未接受过抗精神病治疗,近 4 周每天至少出现 1 次幻听,用听觉幻听评定量表(AHRS) 评估严重程度。
- 不伴 AVH 的首发精神分裂症患者:15 人,同样为未治疗的首发患者,但从未出现幻听或近 2 年无幻听。
- 健康对照:19 人,无精神疾病史,用前驱症状问卷确认无精神病倾向。
三组在年龄、性别、教育程度上无显著差异,确保结果不受这些因素影响。
2. 影像采集:高分辨率捕捉脑活动
所有参与者均接受 3.0T MRI 扫描(Siemens Magnetom Trio Tim),采集两种关键影像:
- 结构像:采用磁化准备快速梯度回波序列(MPRAGE),获取高空间分辨率的脑解剖结构(1×1×1 mm³),用于定位功能异常脑区。
- 静息态功能像:采用回波平面成像序列(EPI),记录大脑自发活动(TR=2000ms,TE=30ms,33 层,4mm 层厚),扫描时参与者闭眼、保持静止,共采集 240 个时间点(前 4 个丢弃以排除磁场稳定期干扰)。
特别注意:扫描期间无患者报告幻听,因此本研究属于 “特质研究”,聚焦于幻听的易感性神经基础,而非幻听发作时的即时变化。
3. 数据处理:多步骤解析脑网络
为了从海量功能影像数据中提取有意义的信息,研究团队采用了一系列先进的预处理和分析方法:
预处理(基于 FSL 和 SPM8 软件)
- 头动校正:对齐所有功能影像,排除头动超过 2.5mm 或 3.0° 的参与者(最终排除 4 名患者和 1 名对照)。
- 脑提取:去除非脑组织(如颅骨、脑脊液)。
- 空间平滑:用 6mm 半高宽的高斯核进行平滑,减少噪声。
- 时间滤波:高通滤波(0.007Hz),保留低频波动信号(与神经活动相关)。
- 标准化:将功能影像配准到蒙特利尔神经研究所(MNI)标准脑模板,便于组间比较。
核心分析:独立成分分析(ICA)与双回归
这是研究的技术核心,用于识别静息态网络并分析组间差异:
- ICA:一种 “无模型” 的数据驱动方法,能自动将全脑功能数据分解为空间独立、时间相关的脑网络成分(本研究提取 25 个成分)。通过与已知模板对比,识别出 6 个关键 RSNs:听觉网络、默认模式网络(DMN)、执行网络、运动网络、左额顶叶网络、右额顶叶网络。
- 双回归:分两步实现组间比较:
- 用组 ICA 得到的网络模板,为每个参与者生成个性化的网络时间序列和空间分布图;
- 对个性化网络进行体素水平的组间差异检验(5000 次置换检验,FDR 校正 P<0.05),确定异常激活的脑区。
低频振幅(ALFF)分析
用于验证 ICA 结果,反映局部神经元的自发活动强度:
- 计算 0.01-0.08Hz 频段内信号的振幅,该指标与神经电活动直接相关,能补充网络水平分析的不足。
- 采用两样本 t 检验比较伴 AVH 与不伴 AVH 患者的 ALFF 差异(FDR 校正 P<0.05)。
4. 统计分析:量化差异与关联
- 组间比较:两样本 t 检验分析 RSNs 和 ALFF 的组间差异。
- 相关性分析:Pearson 相关检验脑功能指标与 AHRS 评分(幻听严重程度)的关系。
- 诊断效能:ROC 曲线分析评估 RSNs 指标区分伴 / 不伴 AVH 患者的能力(计算曲线下面积 AUC)。
研究结果:这些脑网络与幻听密切相关
通过上述方法,研究团队发现了一系列与幻听相关的特异性脑网络异常,主要结果如下:
1. 静息态网络(RSNs)的异常共激活
与不伴 AVH 的患者相比,伴 AVH 的患者在 6 个关键 RSNs 中表现出显著的共激活异常(P<0.05,FDR 校正),涉及多个核心脑区:
网络类型 | 异常模式 | 关键脑区 | 可能功能 |
---|---|---|---|
听觉网络 | 共激活增强 | 右侧听觉皮层、双侧岛叶 | 听觉信息处理 |
默认模式网络(DMN) | 共激活增强 | 双侧内侧前额叶、前扣带回、后扣带回、角回 | 自我参照加工、记忆提取 |
执行网络 | 共激活增强 | 双侧前额叶、壳核、丘脑 | 语言产生、认知控制 |
运动网络 | 共激活增强(补充运动区);共激活减弱(丘脑、中央前回) | 补充运动区、丘脑、壳核 | 言语运动控制 |
额顶叶网络(左 / 右) | 共激活增强 | 布洛卡区(语言产生)、韦尼克区(语言理解) | 语言处理 |
简言之,伴幻听的患者在听觉处理、语言产生与监测、运动控制相关的脑网络中,存在广泛的过度激活或连接异常。
2. 低频振幅(ALFF)结果验证
ALFF 分析与 ICA 结果高度一致:伴 AVH 的患者在听觉皮层、缘上回、岛叶、壳核、背外侧前额叶皮层等区域的局部神经活动显著增强,进一步支持这些脑区在幻听中的核心作用。
3. 幻听严重程度与脑活动的关联
最关键的发现是:运动网络的共激活程度与幻听严重程度呈显著正相关(r=0.67,P=0.003)。这意味着运动网络越活跃,患者幻听的症状越严重。
此外,听觉网络(r=0.60,P=0.01)和执行网络(r=-0.51,P=0.04)的活动也与幻听严重程度存在相关性趋势,提示这些网络可能协同参与幻听的发生。
4. 诊断价值:RSNs 可作为潜在生物标志物
ROC 分析显示,所有 RSNs 的功能指标区分伴 / 不伴 AVH 患者的 AUC 为 0.76-0.90(AUC>0.7 提示较好的诊断价值),其中额顶叶网络的 AUC 最高(0.90),表明这些脑网络指标有望成为识别幻听的客观生物标志物。
讨论:幻听为何会出现?这些脑区 “乱了”
研究团队结合既往研究,提出了一个可能的幻听机制模型:
1. 听觉皮层过度激活:“凭空” 产生声音信号
听觉皮层是处理声音的核心区域,伴幻听患者的右侧听觉皮层过度激活,可能是在没有外部声音刺激时,“自发” 产生了虚假的听觉信号 —— 这是幻听的 “源头” 之一。
2. 语言网络异常:把 “内心声音” 当 “外界声音”
布洛卡区和韦尼克区的过度激活,提示患者的语言产生系统异常活跃(可能产生过多 “内心言语”);而背外侧前额叶皮层、角回等监测区域的功能异常,导致大脑无法区分 “内心声音” 和 “外界声音”,最终将内部信号误判为真实声音。
3. 丘脑过滤功能失效:“杂音” 涌入大脑
丘脑是感觉信息的 “过滤器”,正常情况下会筛选重要信号、抑制无关噪音。但伴幻听的患者丘脑活动异常,可能无法有效过滤内部神经噪音,导致大量混乱信号传入听觉皮层,加剧幻听。
4. 运动网络参与:“想说” 却被误听为 “听到”
补充运动区的过度激活与幻听严重程度相关,提示幻听可能与 “言语运动准备” 有关 —— 患者可能在无意识中准备说话时,相关神经信号被错误解读为 “听到声音”。
研究意义与局限
意义
- 首次从网络水平揭示幻听的特异性脑机制:突破了既往单脑区研究的局限,展示了多个网络协同异常如何导致幻听。
- 排除治疗干扰:聚焦首发未治疗患者,结果更接近疾病本身的神经病理。
- 潜在临床价值:RSNs 指标的 AUC 达 0.76-0.90,提示可作为幻听的诊断生物标志物;针对异常网络的干预(如经颅磁刺激)可能成为新疗法。
局限
- 样本量较小:每组仅 15-19 人,可能影响结果的普适性。
- 横断研究:无法确定脑网络异常与幻听的因果关系(是异常导致幻听,还是幻听加剧异常?)。
- 未探索动态变化:静息态网络的动态波动可能更能反映幻听的易感性,需进一步研究。
总结:幻听的 “脑网络密码” 初现
这项研究为我们打开了理解精神分裂症幻听的新窗口:幻听并非单一脑区的问题,而是听觉网络、语言网络、运动网络、默认模式网络等多个系统协同紊乱的结果 —— 大脑在 “制造声音”“监测声音”“过滤噪音” 等环节同时出错,最终让患者 “听到” 不存在的声音。
未来,随着样本量扩大和纵向研究的开展,这些脑网络异常有望成为幻听的早期预警指标和治疗靶点,为精神分裂症的精准诊疗提供关键依据。
参考文献:
Cui LB, Liu L, Guo F, et al. Disturbed Brain Activity in Resting-State Networks of Patients with First-Episode Schizophrenia with Auditory Verbal Hallucinations: A Crosssectional Functional MR Imaging Study. Radiology. 2017;283 (3):810-819.
感谢关注,欢迎合作
联系方式
微信:Chushanzhishi2022
微信公众号:NMR凯米小屋
作者B站:楚山之石
CSDN: 楚山之石
知乎: 楚山之石