- 博客(16)
- 资源 (2)
- 收藏
- 关注
原创 LangChain4J-(1)-Hello World
LangChain4J是一个专为Java开发者设计的开源框架,用于简化大语言模型(LLM)的集成和应用开发。它支持主流LLM如GPT、Gemini等,提供对话记忆管理、工具调用、提示词工程等功能,适用于构建聊天机器人、智能助手等场景。与Python版LangChain不同,它更符合Java开发习惯,能与Spring Boot无缝集成。文章详细介绍了如何通过Maven项目配置LangChain4J,包括获取API密钥、项目搭建、Spring Boot整合等步骤,并对比了原生整合和Spring Boot整合的优
2025-08-12 01:22:15
989
原创 你应该懂的AI大模型 之 推理框架
大模型推理框架是专门优化预训练大模型 “推理阶段” 的工具集,专注于解决模型部署中的效率、成本和工程化问题。与训练框架(如 PyTorch、TensorFlow)不同,推理框架不参与模型参数的学习过程,而是聚焦于如何让训练好的模型在生产环境中更快速、更经济、更稳定地响应请求。简单来说,训练框架负责 “教会模型思考”,而推理框架负责 “让模型高效地回答问题”。
2025-08-06 22:26:03
945
原创 你应该懂的AI大模型 之 LoRA
LoRA(低秩自适应)是一种高效的大模型微调技术,通过低秩矩阵分解在不改动原模型参数的情况下实现定制化训练。其核心原理是在预训练模型权重上叠加两个低秩矩阵(A和B),仅需训练少量参数(可减少99%参数),显著降低计算成本。例如130亿参数的LLaMA模型,LoRA只需训练约100万参数。该技术支持领域定制(如医疗问答)、个性化生成(如电商话术)等场景,并可通过LLamaFactory平台实现可视化微调。关键技术参数包括秩(影响模型能力)、缩放系数(控制更新幅度)等,需根据任务复杂度调整。训练完成的LoRA模
2025-07-02 23:52:40
868
原创 你应该懂的AI大模型 之 LLamaFactory 之 LoRA微调Llama3
本文介绍了使用LLaMA-Factory框架对Llama-3模型进行局部微调的方法。主要内容包括:1. LLaMA-Factory框架概述:支持多种大模型微调方法,提供便捷操作界面;2. 在AutoDL平台部署Llama-3的步骤,包括模型下载和验证;3. 详细讲解LLaMA-Factory的WebUI配置,涵盖模型选择、微调方法(如LoRA)、训练参数设置等关键环节;4. 解析Llama-3模型参数和训练日志的输出含义;5. 介绍模型导出和评估方法。文章为开发者提供了从环境搭建到模型微调的全流程指导,重点
2025-07-02 23:39:23
1160
原创 你应该懂的AI大模型 之 Ollama
Ollama 凭借其便捷性和量化技术,为个人开发者提供了低成本、高效率的大语言模型部署和使用方案,是个人探索 AI 技术的理想工具。但由于其在性能、功能和生态支持等方面的局限性,并不适合企业级大规模应用。而 vllm 以高性能、丰富的企业级功能和专业支持,更契合企业复杂的业务需求。无论是个人开发者还是企业用户,在选择模型部署工具时,需充分结合自身需求与使用场景,才能发挥大语言模型的最大价值。
2025-06-25 22:50:29
928
原创 你应该懂的AI大模型 之 微调 之 增量微调
模型微调(Fine-tuning)指的是将一个预训练好的模型(通常在大规模通用数据集上训练)针对特定任务或领域进行优化的过程。那么什么是预训练好的模型呢?预训练好的模型(Pre-trained Model)是指在大规模通用数据集上经过预先训练,具备基础特征提取能力的机器学习模型。这类模型无需针对具体任务从零训练,而是作为 “起点”,通过微调(Fine-tuning)快速适配不同场景。讲的通俗一点就是:只调整模型的一部分结构(参数),为了让模型能够适应当前的任务,就只调整一部分就足够了。
2025-06-25 22:27:30
1153
原创 你应该懂的AI大模型 之 datasets
dataset库也是Hugging Face 提供的一个强大工具库,用于加载、处理和操作大规模数据集。它支持多种格式(如 CSV、JSON、Parquet 等)以及在线数据集(如 Hugging Face Hub 上的数据集)。加载数据集后,可以查看数据集的基本信息,如数据集大小、字段名称等。Hugging Face 的 datasets 库支持多种数据集格式,如 CSV、JSON、TFRecord 等。我们通过下面的代码来详细看一下 dataset 库是如何使用的。库一起使用来处理和准备数据。
2025-06-15 22:53:49
174
原创 你应该懂的AI大模型 之 transformers
这篇文章简明扼要地介绍了Transformer模型架构与transformers库的基本概念。关键点包括:1. Transformer是由Google提出的基于自注意力机制的深度学习架构,包含编码器、解码器和分词器等核心组件;2. transformers库是HuggingFace开发的工具包,提供预训练模型接口;3. 文章还讲解了AutoModel、AutoTokenizer等核心类的作用,并通过BERT模型示例演示了transformers库的实际应用。最后简要介绍了HuggingFace、CUDA、A
2025-06-12 23:22:11
625
原创 你应该懂的AI 大模型 之 LangChain 之 LCEL
本文 对《LangChain》一文中的 Chain 与 LCEL 部分的示例进行详细的展示。先回顾下 在LangChain框架中,和是两个密切相关但本质概念。
2025-06-08 20:27:22
1074
原创 你应该懂的AI大模型 之 LangChain
template = PromptTemplate.from_template("给我讲个关于{subject}的笑话")print(template.format(subject='李华'))# 定义 LLM# 通过 Prompt 调用 LLMret = llm.invoke(template.format(subject='李华'))# 打印输出。
2025-06-08 18:03:06
985
原创 你应该懂的AI大模型之RAG
大模型的知识不是实时的,比如现在《藏海传》已经完结了,但是我问deepseek给我的回答却是:除了知识不是实时的之外,大模型可能也不知道你当前所在业务领域的知识。这就是大模型目前所固有的局限性。向量是一种有大小和方向的数学对象。它可以表示为从一个点到另一个点的有向线段。例如,二维空间中的向量可以表示为 (x,y),表示从原点 (0,0) 到点 (x,y) 的有向线段。从数学的角度看,向量是一个“有方向和大小的东西”,可以用数字坐标来描述。在计算机。
2025-06-05 23:34:28
979
原创 你应该懂的AI大模型 之 大模型技术架构
简单讲就是问题的初始化与输出控制,比如我们问大模型如何煮咖啡,大模型能清楚的在500 字以内说清楚如何煮咖啡,而不是胡说八道无关的内容。类比人类处理问题的步骤就是领导给我们下达一个我们能听懂的任务,并且我们知道最后要给领导一个什么东西。
2025-05-13 23:45:10
947
原创 你应该懂的SpringCloud版本与组件
微服务是 SOA 的服务拆分粒度的最佳实践!当我们同时使用 Springboot和 SpringCloud 的时候,大家一定要注意是由 Cloud决定你的 boot版本的,有的同学说到,我们公司 jdk8 的项目还在维护和开发,我不用太关注版本,笔者要提醒的是搞微服务如果不注意版本会死的很难看很难看的。SOA 架构同样都是对系统进行拆分,SOA在垂直架构的基础上,抽离出重叠的功能作为公共的服务,来解决重复造轮子的问题(垂直架构中部分功能重叠,比如用户管理系统管理等。
2024-06-18 01:17:02
2821
1
原创 git学习笔记
git学习笔记把我学的东西做了个总结供大家取用。1.Git的来历,有兴趣的自己百度啊~~~2.分布式管理方案与集中式管理方案 1)分布式版本控制系统根本没有“中央服务器” 2)在实际使用分布式版本控制系统的时候,其实很少在两人之间的电脑上推送版本库的修改,因为可能你们俩不在一个局域网内,两台电脑互相访问不了,也可能今天你的同事病了,他的电脑压根没有开机。 3)分布式版本控制系...
2019-12-20 22:46:11
339
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人