PIL + pytesseract 玩转验证码图片识别

该博客介绍了如何使用Python的PIL和pytesseract模块进行图片验证码识别。首先,通过pip安装所需库,然后安装tesseract-ocr引擎并设置环境变量。接着,通过代码读取图片、进行灰度处理,并调用pytesseract进行识别。对于中文验证码,需要安装中文语言包。整个过程详细阐述了验证码识别的基本步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有时候我们在模拟登陆的时候会遇到图片验证码,如果是简单的数字字母验证码,可以通过图片识别的方法识别验证码,再发送post请求模拟登陆。

验证码图片的爬取可以通过找到某验证码的url,通过python的requests模块get图片资源,这里不做过多介绍。

我们在本地尝试完成验证码图片的识别。本地已经安装Anaconda3,使用Python3。其下均在Anaconda环境进行操作。

1.安装PIL模块和pytesseract模块

PIL是python的一个图像处理标准库,pytesseract是免费的ocr识别库。在Anaconda Prompt中安装两个模块。

pip install PIL
pip install pytesseract

2.安装识别引擎tesseract-ocr

tesseract-ocr是OCR文字识别引擎,需要在本机进行安装。

下载后傻瓜式安装即可,这里可以将tesseract.exe加入环境变量,如不加入,后面需要修改Anaconda安装目录D:\Anaconda3\Lib\site-packages\pytesseract\pytesseract.py中的tesseract_cmd路径。

tesseract_cmd = 'D:/Tesseract-OCR/tesseract.exe'
3.图片识别
import pytesseract
from PIL import Image
import numpy as np
 
path='D:/vc_code.png'
imageObject = Image.open(path) # 传入保存的图片路径
print(imageObject)
imageObject = np.array(imageObject.convert('L'), 'f')  #图片灰度处理
result = pytesseract.image_to_string(imageObject)
print("验证码识别结果:", result)
4.中文识别

在’D:\Tesseract-OCR’路径下运行cmd,输入命令tesseract --list-langs查看支持的语言,未安装有chi_sim中文数据包,需要手动安装。下载解压后’D:\Tesseract-OCR\tessdata’目录下即可。
在这里插入图片描述
使用方法:

result = pytesseract.image_to_string(imageObject, lang='chi_sim')
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值