卷积神经网络(CNN)原理与实战:从LeNet到ResNet

卷积神经网络(CNN)作为深度学习的核心技术之一,彻底改变了计算机视觉领域的格局。本文将全面解析CNN的工作原理,并通过PyTorch框架实现从经典LeNet到现代ResNet的完整代码示例,帮助读者深入理解这一强大工具。

卷积神经网络的核心思想

传统全连接神经网络在处理图像数据时面临巨大挑战。想象一下,一张普通的300x300像素彩色图像,如果将其展平作为输入,仅输入层就需要270,000个节点(300×300×3),这样的网络参数量会极其庞大,难以训练且容易过拟合。卷积神经网络通过引入三个关键思想优雅地解决了这些问题:局部感受野、参数共享和空间下采样。

局部连接是CNN区别于全连接网络的首要特征。它基于一个朴素的观察:图像中的局部区域通常包含有意义的特征,如边缘、纹理或特定形状。CNN中的每个神经元不再与上一层的所有神经元连接,而只连接输入区域的一个小窗口(通常3×3或5×5),这种设计大幅减少了参数数量。例如,使用5×5的局部连接,每个神经元只需25个权重参数,而不是全连接情况下的270,000个。

参数共享是CNN的第二个核心思想。在全连接网络中,每个连接都有独立的权重参数。而在CNN中,同一特征图的所有神经元共享相同的权重参数,这意味着无论特征检测器(卷积核)在图像的哪个位置滑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软考和人工智能学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值