
计算机视觉
文章平均质量分 79
软考和人工智能学堂
PHP/MySQL
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于深度哈希与图索引的十亿级图像近重复检测系统
在上一篇文章中,我们介绍了基于Vision API和SimHash的亿级图像去重方案。本文将更进一步,探讨如何应对十亿级图像库的近重复检测挑战,提出一种结合深度哈希学习与图索引的创新架构。原创 2025-06-09 20:19:22 · 203 阅读 · 0 评论 -
深度学习在移动开发中的应用:实时面部表情识别实战
我们将使用TensorFlow Lite框架,结合MediaPipe面部网格解决方案,实现一个能够在主流Android设备上达到30FPS的表情识别应用,并深入探讨其优化技巧和实际应用场景。本系列文章已全面覆盖移动端深度学习的五大核心应用:图像分类、目标检测、图像分割、姿态估计和表情识别。随着移动硬件性能的持续提升和深度学习算法的不断进步,设备端表情识别的能力边界将持续扩展。特别是微表情识别、多模态情感分析等前沿技术的发展,将进一步推动移动端表情识别技术的应用深度和广度。引言:移动端表情识别的意义与挑战。原创 2025-05-20 08:56:43 · 274 阅读 · 0 评论 -
深度学习在移动开发中的应用:实时手势识别实战
我们将使用TensorFlow Lite框架,结合MediaPipe手势识别解决方案,实现一个能够在主流Android设备上达到60FPS的手势识别应用,并深入探讨其优化技巧和实际应用场景。特别是3D手势识别、双手精细操作等前沿技术的发展,将进一步推动移动端手势识别技术的应用深度和广度。在下一篇文章中,我们将探讨深度学习在移动端的另一个创新应用:实时表情识别,包括如何在资源受限的环境中实现复杂面部表情的实时分析,以及这项技术在情感计算、心理健康等场景中的应用。引言:移动端手势识别的价值与挑战。原创 2025-05-20 08:04:10 · 268 阅读 · 0 评论 -
深度学习在移动开发中的应用:实时姿态估计实战
我们将使用TensorFlow Lite框架,结合专为移动端优化的MoveNet模型,实现一个能够在主流Android设备上达到30FPS的多人姿态跟踪解决方案,并深入探讨其优化技巧和实际应用场景。特别是3D姿态估计、多人长期跟踪等前沿技术的发展,将进一步推动移动端姿态估计技术的应用深度和广度。在下一篇文章中,我们将探讨深度学习在移动端的另一个创新应用:实时手势识别,包括如何在资源受限的环境中实现复杂手势的实时识别,以及这项技术在AR/VR交互、智能家居控制等场景中的应用。第四部分:典型应用场景实现。原创 2025-05-19 10:27:13 · 172 阅读 · 0 评论 -
深度学习在移动开发中的应用:实时图像分割实战
与仅识别图像内容的分类和定位目标的检测不同,分割需要达到像素级的精确度,这对移动设备的计算能力提出了前所未有的挑战。我们将使用TensorFlow Lite框架,结合专为移动端优化的DeepLabV3+架构,构建一个能够在主流Android设备上达到25FPS的语义分割系统,并探讨其在虚拟背景、医疗辅助等场景中的应用。在下一篇文章中,我们将探讨深度学习在移动端的另一个激动人心的应用:实时姿态估计,包括如何在资源受限的环境中实现多人姿态实时跟踪,以及这项技术在健身指导、动作捕捉等场景中的应用。原创 2025-05-19 10:22:06 · 182 阅读 · 0 评论 -
基于深度学习的图像风格迁移:从艺术到现实
图像风格迁移(Style Transfer)是计算机视觉领域的一项热门技术,旨在将一幅图像的内容与另一幅图像的风格相结合,生成具有艺术感的图像。近年来,随着深度学习技术的发展,尤其是卷积神经网络(CNN)和生成对抗网络(GAN)的引入,图像风格迁移的效果和效率得到了显著提升。本文将探讨基于深度学习的图像风格迁移技术,并通过代码示例展示其实现过程。原创 2025-03-24 07:45:00 · 201 阅读 · 0 评论 -
基于深度学习的语音识别实战:从RNN到Transformer
本文通过一个完整的实战案例,展示了如何使用RNN和Transformer进行语音识别。我们详细介绍了数据准备、模型定义、训练和评估的步骤,并提供了可运行的代码。希望本文能为读者在实际项目中应用语音识别技术提供实用的指导和启发。原创 2025-03-19 09:30:00 · 138 阅读 · 0 评论 -
MATLAB学习之旅:图像处理与计算机视觉应用
在未来的学习和实践中,我们将继续深入探索MATLAB在图像处理与计算机视觉领域的更多功能和应用场景,不断创新和拓展我们的知识边界。在MATLAB的图像处理与计算机视觉应用中,我们从图像处理的基础开始,学习了如何读取、显示和进行基本的图像操作。例如,我们可以使用边缘检测算法来提取图像中的边缘信息,使用角点检测算法来检测图像中的角点等。在实际应用中,图像往往受到各种噪声的干扰,影响图像的质量和分析结果。函数在原始图像中进行模板匹配,最后找到匹配结果中的最大值位置,并在原始图像中标记出目标的位置。原创 2025-02-25 08:35:26 · 355 阅读 · 0 评论 -
DeepSeek生成模型(Generative Models)基础与实践
首先,我们需要定义VAE的编码器和解码器。# 定义编码器# 定义解码器# 定义采样层# 定义VAE模型# 定义VAE损失函数# 编译VAE模型在这个示例中,我们定义了一个包含编码器、解码器和采样层的VAE模型,并使用自定义的VAE损失函数进行训练。首先,我们需要定义生成器和判别器。# 定义生成器])# 定义判别器])# 初始化生成器和判别器# 编译判别器# 冻结判别器的权重# 定义GAN模型# 编译GAN模型。原创 2025-02-13 06:58:26 · 417 阅读 · 0 评论 -
DeepSeek计算机视觉(Computer Vision)基础与实践
接下来,我们定义一个简单的卷积神经网络(CNN)模型,并使用DeepSeek进行训练。# 定义图像分类模型Flatten(),])# 初始化图像分类模型# 编译模型在这个示例中,我们定义了一个包含卷积层、池化层和全连接层的CNN模型,并使用Softmax激活函数进行多分类。接下来,我们定义一个简单的目标检测模型,并使用DeepSeek进行训练。# 定义目标检测模型Flatten(),原创 2025-02-12 13:42:16 · 3317 阅读 · 0 评论