PCL入门<五>使用VOXEL稀疏点云

本文介绍了如何使用PCL库中的VOXEL方法对点云进行稀疏化处理,以降低计算复杂度并节省资源。通过设定网格大小(分辨率),将点云划分为网格并保留每个网格内的一个点。代码示例展示了如何应用该方法,过滤后的点云数量显著减少,但形状基本保持不变,适用于对精确度要求不高的场景。官方效果图对比显示,VOXEL过滤能有效减小点云密度,提高处理速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用PCL的处理点云时,很多时候我们不需要有太过高的分辨率,因为点云过多会造成计算变慢,并且更加消耗计算资源,所以我们需要把点云变稀,voxel就是一个很好的方法。

voxel就是三维的pixel,也就是把点云画出网格,然后每个网格内保留一个点就可以了。网格的大小可以自己定义,这就相当于一个downsample(下采样)


大概的样子就是这样,我显示出了所有的点,如果某一个格子内没有点就可以不显示了,你也可以把格子调的很密,颜色也可以保留。

话不多说,直接上代码:

首先必要的引用的是

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>

其中特殊的也就是第三个了,前两个要用PCL项目的话基本上都会引用了。第三个引用了就可以使用PCL自带的voxel的功能了,不过如果不太信任pcl的筛选方法也可以自己写一个,voxel的原理很简单,就是遍历塞进不同的格子里,实现起来也就不怎么难了,我们这里只讲怎么使用pcl的方法,毕竟这样实现起来最快。

接下来的核心代码:

  pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
  sor.setIn
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值