算法练习----杨辉三角(1)

本文介绍了杨辉三角的实质,即二项式展开的系数排列,并展示了C语言实现杨辉三角的代码,运行效果良好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载请注明:http://blog.csdn.net/u011046042/article/details/75133645
- 杨辉三角形的实质
其实质是二项式(a+b)的n次方展开后各项的系数排成的三角形,它的特点是左右两边全是1,从第二行起,中间的每一个数是上一行里相邻两个数之和。

-直观的看就是这样的
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
- C语言代码的实现:

#include   <stdio.h>
int main()
{
    int i,j,n=0,a[20][20]={
  
  0};
    while(n<
### PTA练习题7-1杨辉三角解法及代码实现 #### 一、题目描述 PTA练习题7-1要求构建并打印指定层数的杨辉三角。每一层中的每一个数等于它肩膀上的两个数之和。 #### 二、算法思路 为了生成杨辉三角,可以采用二维数组来存储数据。对于第n行(从0开始计),除了首尾两端外,其他位置处的数值等于上一行相邻两元素相加的结果[^1]。 #### 三、具体实现方法 通过循环结构逐层填充这个二维列表,在每次迭代过程中更新当前行的数据,并将其加入到最终结果集中。当完成所有必要的计算之后,遍历该集合即可得到完整的图形表示形式。 下面是Python版本的具体实现: ```python def generate_pascals_triangle(n): triangle = [] for row_num in range(n): # 初始化新行为全1 new_row = [1] * (row_num + 1) # 更新内部值为前一行对应索引处的两项之和 for i in range(1, row_num): new_row[i] = triangle[row_num - 1][i - 1] + triangle[row_num - 1][i] # 将新建好的行添加至总表内 triangle.append(new_row) return triangle def print_pascals_triangle(triangle): max_width = len(' '.join(map(str, triangle[-1]))) for row in triangle: formatted_row = ' '.join(map(str, row)) centered_row = f"{formatted_row:^{max_width}}" print(centered_row) if __name__ == "__main__": n = int(input()) pascals_triangle = generate_pascals_triangle(n) print_pascals_triangle(pascals_triangle) ``` 此段程序首先定义了一个`generate_pascals_triangle()`函数用于创建给定高度的杨辉三角形矩阵;接着实现了另一个辅助性的`print_pascals_triangle()`用来美观地展示输出效果。最后部分则是主逻辑入口,接收用户输入作为参数调用上述功能模块。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道亦无名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值