L1正则化、L2正则化和弹性网络(Elastic Net)是常用的正则化技术,用于防止机器学习模型过拟合,提高模型的泛化能力。 L1正则化(Lasso回归) L1正则化通过在损失函数中加入权重系数的绝对值之和的惩罚项来实现。 正则化项:(λ∑i∣wi∣)(\lambda \sum_{i} |w_i|)(λ∑