面试题:100个白球,100个黑球,每次取两个

本文探讨了一个经典的概率问题:袋中有黑白球各100个,每次取出两球按特定规则放入一球,最终袋中剩余一球的颜色概率分析。通过两种思路解答,一是观察球数量奇偶变化规律,二是采用异或运算模拟过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面试题:袋子里有黑白球各100个,每次从袋子里取2个球,若取的球颜色相同,则放入1个黑球,若不同,则放入1个白球。
问:最后袋子里剩下1个黑球的概率是多少?

思路一:
每次取球有3种情况:
1)两黑,此时放入1个黑球。黑球在袋子里个数为奇数个,白球偶数个
2)两白,此时放入1个黑球。黑球在袋子里个数为奇数个,白球偶数个
3)1黑1白,此时放入1个白球。黑球在袋子里个数为奇数个,白球偶数个
总之,黑球在袋子里始终是奇数个,白球是偶数个,所以最后一定剩下一个白球。

思路二:

将黑球看作0,白球看作1,那么对于每次的操作可以做这样的想象:每次捞起两个数字做一次异或操作,并将所得的结果再次丢回桶中。因此最后的结果实际上相当于把所有的球都进行一次异或运算,最后所得的结果即为最后剩余的球。

取两个球比较换成是两个数做异或。题目就变成将100个0和100个1全部放一起做异或运算。异或运算满足交换律,因此运算结果与次序无关。分成100个0一组和100个1一组,这两组的运算结果都为0,相同,因此最后结果为0。

异或运算规律:
1)偶数个1异或,结果为0;
2)偶数个0异或,结果为0;
3)奇数个1异或,结果为1;
4)奇数个0异或,结果为0:

参考资料:
https://blog.csdn.net/lishihaojie/article/details/45846765
https://zhidao.baidu.com/question/1046181540080117739.html

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值