1818: [Cqoi2010]内部白点

本文介绍了一种在无限大正方形网格中通过特定规则将白色顶点染成黑色的算法。该算法首先给出初始黑色顶点的位置,然后通过迭代过程将符合条件的内部白色顶点变为黑色,直至不再存在符合条件的白色顶点。文章详细阐述了实现这一过程的具体算法,并提供了完整的源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

Description

无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点)。每秒钟,所有内部白点同时变黑,直到不存在内部白点为止。你的任务是统计最后网格中的黑点个数。 内部白点的定义:一个白色的整点P(x,y)是内部白点当且仅当P在水平线的左边和右边各至少有一个黑点(即存在x1 < x < x2使得(x1,y)和(x2,y)都是黑点),且在竖直线的上边和下边各至少有一个黑点(即存在y1 < y < y2使得(x,y1)和(x,y2)都是黑点)。

Input

输入第一行包含一个整数n,即初始黑点个数。以下n行每行包含两个整数(x,y),即一个黑点的坐标。没有两个黑点的坐标相同,坐标的绝对值均不超过109。

Output

输出仅一行,包含黑点的最终数目。如果变色过程永不终止,输出-1。

Sample Input

4
0 2
2 0
-2 0
0 -2

Sample Output

5

数据范围
36%的数据满足:n < = 500
64%的数据满足:n < = 30000
100%的数据满足:n < = 100000

Solution

就是给一些和坐标轴平行的线段求交点数。
思路就是,按x坐标递增枚举和y轴平行的线段,看每条线段与多少个和x轴平行的线段相交。
那么我们就需要知道对于每一条竖线,在它的y坐标覆盖范围内有多少横线,所以用树状数组维护区间和。
每条横线,左端点记为1,右端点记为-1。从左往右扫,碰到左端点就将树状数组中y坐标的位置+1,右端点-1。
就是这样。

#include <bits/stdc++.h>

using namespace std;

const int MAXN = 100005;

struct Point{
    int x, y, pos;
    Point() {}
    Point(int a, int b) : x(a), y(b) {}
    bool operator < (const Point &p) const {
        if (x != p.x) return x < p.x;
        else return y < p.y;
    }
};

int n;
Point p[MAXN];
int t[MAXN << 1], tot = 0;
int lef[MAXN << 1], rig[MAXN << 1];

int gethash(int x) {
    return lower_bound(t + 1, t + tot + 1, x) - t;
}

int c[MAXN << 1];
int lowbit(int x) {
    return x & (-x);
}
void insert(int pos, int v) {
    for (int i = pos; i <= MAXN << 1; i += lowbit(i))
        c[i] += v;
}
int getsum(int pos) {
    int ans = 0;
    for (int i = pos; i; i -= lowbit(i))
        ans += c[i];
    return ans;
}

int main() {
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) {
        scanf("%d %d", &p[i].x, &p[i].y);
        t[++tot] = p[i].x;
        t[++tot] = p[i].y;
    }
    sort(t + 1, t + tot + 1);
    tot = unique(t + 1, t + tot + 1) - t - 1;//hash

    memset(lef, 0x3f, sizeof(lef));

    for (int i = 1; i <= n; i++) {
        p[i].x = gethash(p[i].x), p[i].y = get(p[i].y);

        lef[p[i].y] = min(lef[p[i].y], p[i].x);
        rig[p[i].y] = max(rig[p[i].y], p[i].x);
    }
    sort(p + 1, p + n + 1);
    for (int i = 1; i <= n; i++) {
        if (lef[p[i].y] == rig[p[i].y]) p[i].pos = 2;
        else if (lef[p[i].y] == p[i].x) p[i].pos = 1;
        else if (rig[p[i].y] == p[i].x) p[i].pos = -1;
        else p[i].pos = 0;
    }
    int ans = n;
    for (int i = 1; i <= n; ) {
        int rr = i;
        while (rr < n && p[i].x == p[rr + 1].x) rr++;
        // cout << i << ' ' << rr << endl;
        for (int j = i; j <= rr; j++) {
            if (p[j].pos == -1 || p[j].pos == 0) insert(p[j].y, -1);
        }
        ans += max(0, getsum(p[rr].y - 1) - getsum(p[i].y));
        for (; i <= rr; i++) {
            if (p[i].pos == 1 || p[i].pos == 0) insert(p[i].y, 1);
        }
    }
    printf("%d\n", ans);

    return 0;
}
根据引用所述,交错序列是一个仅由01构成的序列,其中没有相邻的1(可以有相邻的0)。特征值定义为x^ay^b,其中xy分别示01出现的次数。长度为n的交错序列可能有多个。问题要求计算所有长度为n的交错序列特征值的除以m的余数。 根据引用所述,输入文件包含一个行,该行包含三个整数n、a、bm。其中,1≤n≤10000000,0≤a、b≤45,m<100000000。 为了解决这个问题,可以使用动态规划矩阵快速幂优化的方法,具体实现可以参考引用提到的相关算法算法的思路是通过计算长度为n的交错序列的特征值,然后将所有特征值求并对m取余数。 具体步骤如下: 1. 使用动态规划计算长度为n的所有交错序列的特征值,将结果保存在一个矩阵中。 2. 使用矩阵快速幂优化,将动态规划的过程进行优化。 3. 对优化后的结果进行求,并对m取余数。 4. 输出结果。 参考引用给出的博客中的代码实现,可以帮助你更好地理解实现该算法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*](https://blog.csdn.net/weixin_30892987/article/details/99470493)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值