论文解析 DEEP SORT 多目标跟踪 Kalman滤波 数据关联

论文解析 DEEP SORT 多目标跟踪 Kalman滤波 数据关联

SIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRIC

code点我

ABSTRACT

SORT是一个简单有效的多目标跟踪实操算法。
DEEP SORT 通过整合外观信息提升SORT算法性能。它能有效跟踪长时段的遮挡的目标,避免被跟踪目标的身份变更。算法继承原始框架的精神,将大部分计算复杂度放在离线预训练阶段。在该阶段我们在大规模人员再识别数据集上学习了一个深度关联矩阵。在线应用时,利用视觉外观空间最近邻查找,建立测量到跟踪的关联。实验评估表明我们的改进将身份变更减少了45%,在高帧率下实现整体竞争力的性能。

INTRODUCTION

SORT算法对图像空间进行卡尔曼滤波,并逐帧利用使用边框重叠程度为关联度量的匈牙利算法进行数据关联。SORT在高帧率下获得了良好的性能。SORT在MOT挑战数据集人员检测上第一,在标准检测上的平均排名高于MHT。
SORT在有遮挡的场景下有缺陷。因为状态估计不确定性较低导致采用的关联度量不准确。DEEP SORT 更有见地的使用结合运动和外观信息来替换关联度量,克服了这一问题。特别是,应用了一个经过训练的卷积神经网络(CNN)来在大规模人员再识别数据集上区分行人。通过整合该网络,提高了对漏失和遮挡的鲁棒性,同时保持系统易于实现、高效和适用于在线场景。

详细内容
Track Handling and State Estimation 跟踪处理 状态估计

我们的跟踪场景定义在八维状态空间
( u , v , γ , h , x ˙ , y ˙ , γ ˙ , h ˙ ) (u,v,\gamma,h,\dot{x},\dot{y},\dot{\gamma},\dot{h}) (u,v,γ,h,x˙,y˙,γ˙,h˙)分别代表box中心 ( u , v ) (u,v) (u,v),长宽比 γ \gamma γ,高度 h h h,及其对应的速率。使用标准的Kalman滤波与恒速度运动和线性观测模型,其中我们取边界坐标 ( u , v , γ , h ) (u,v,\gamma,h) (u,v,γ,h)作为对对象状态的直接观测.
定义 k k k为距离最近成功测量关联 a k a_k ak帧的计数,随着Kalman滤波预测增长,成功关联测量重置为0,超出预先设定的最大寿命 A m a x A_{max} Amax

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值