题目1017:还是畅通工程

这篇博客主要探讨了关于村庄之间距离的问题,涉及多个村庄的编号及其相互间的距离计算。通过输入的测试用例,分析如何处理村庄数目及它们之间的畅通工程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:
    某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
输入:

    测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
    当N为0时,输入结束,该用例不被处理。

输出:

    对每个测试用例,在1行里输出最小的公路总长度。

样例输入:
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
样例输出:
3
5

代码:

#include <stdio.h>
#include <algorithm>
using namespace std;
int tree[100];
int findRoot(int x) {
    if(tree[x] == -1) return x;
    else {
	int tmp = findRoot(tree[x]);
	tree[x] = tmp;
	return tmp;
    }
}
struct Node {
    int s;
    int e;
    int d;
}buf[5000];

bool cmp(Node a,Node b) {
    return a.d < b.d;
}

int main() {
    int n;
    while(scanf("%d",&n)!=EOF) {
	if(n==0) break;
	for(int i=1;i<=n*(n-1)/2;i++)
	    scanf("%d %d %d",&buf[i].s,&buf[i].e,&buf[i].d);
	sort(buf+1,buf+n*(n-1)/2+1,cmp);
	for(int i=1;i<100;i++)
	    tree[i] = -1;
	int sum = 0;
	for(int i=1;i<=n*(n-1)/2-1;i++) {
	    int x = findRoot(buf[i].s);
	    int y = findRoot(buf[i].e);
	    if(x!=y) {
		tree[x] = y;
		sum += buf[i].d;
	    }
	}
	printf("%d\n",sum);
    }
    return 0;
}
	






最小生成树(MST)

1.生成树:在一个无向连通图中,如果存在一个连通子图包含原图中所有结点和部分边,且这个子图不存在回路,那么我们称该子图为原图的一个生成树。

2.最小生成树:在带权图中,所有的生成树中边权的和最小的那棵生成树是最小生成树。

3.定理:一个连通图中,任意选取几个点属于集合A,其余结点属于集合B,则必定存在一棵最小生成树,它包含两个顶点顶点分别属于集合A和集合B(即连接这两个点的边,就将A,B两个集合连起来了)的边中权值最小的边。

如:连通集合A和集合B的边中权值最小的一条为E,则该边必是一个最小生成树的一条边。

以上定理就是求最小生成树Kruscal的原理(先选出边权最小的,且边的两个顶点属于不同集合)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值