-
题目描述:
-
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
-
输入:
-
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
-
输出:
-
对每个测试用例,在1行里输出最小的公路总长度。
-
样例输入:
-
3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0
-
样例输出:
-
3 5
代码:
#include <stdio.h>
#include <algorithm>
using namespace std;
int tree[100];
int findRoot(int x) {
if(tree[x] == -1) return x;
else {
int tmp = findRoot(tree[x]);
tree[x] = tmp;
return tmp;
}
}
struct Node {
int s;
int e;
int d;
}buf[5000];
bool cmp(Node a,Node b) {
return a.d < b.d;
}
int main() {
int n;
while(scanf("%d",&n)!=EOF) {
if(n==0) break;
for(int i=1;i<=n*(n-1)/2;i++)
scanf("%d %d %d",&buf[i].s,&buf[i].e,&buf[i].d);
sort(buf+1,buf+n*(n-1)/2+1,cmp);
for(int i=1;i<100;i++)
tree[i] = -1;
int sum = 0;
for(int i=1;i<=n*(n-1)/2-1;i++) {
int x = findRoot(buf[i].s);
int y = findRoot(buf[i].e);
if(x!=y) {
tree[x] = y;
sum += buf[i].d;
}
}
printf("%d\n",sum);
}
return 0;
}
最小生成树(MST)
1.生成树:在一个无向连通图中,如果存在一个连通子图包含原图中所有结点和部分边,且这个子图不存在回路,那么我们称该子图为原图的一个生成树。
2.最小生成树:在带权图中,所有的生成树中边权的和最小的那棵生成树是最小生成树。
3.定理:一个连通图中,任意选取几个点属于集合A,其余结点属于集合B,则必定存在一棵最小生成树,它包含两个顶点顶点分别属于集合A和集合B(即连接这两个点的边,就将A,B两个集合连起来了)的边中权值最小的边。
如:连通集合A和集合B的边中权值最小的一条为E,则该边必是一个最小生成树的一条边。
以上定理就是求最小生成树Kruscal的原理(先选出边权最小的,且边的两个顶点属于不同集合)。