PyTorch实战:基于CNN的Fashion-MNIST图像分类教程

📋 教程概述

本文将带您从零开始使用PyTorch构建卷积神经网络(CNN),完成Fashion-MNIST数据集的图像分类任务。通过本教程,您将掌握:

  • 深度学习环境搭建(PyTorch安装与配置)
  • Fashion-MNIST数据集的加载与预处理
  • 卷积神经网络(CNN)的原理与实现
  • 模型训练、评估与结果分析
  • 常见问题解决与性能优化思路

技术栈:Python 3.8+、PyTorch 2.3.0、torchvision
难度:入门级(适合有Python基础,对深度学习感兴趣的读者)

🛠️ 环境准备

1. 安装依赖库

首先确保安装以下核心库(建议使用虚拟环境):

# 安装PyTorch(根据系统选择CPU/GPU版本,参考官网:https://pytorch.org/)
pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cu118  # GPU版本(CUDA 11.8)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值