加权

最近在研究约束聚类的问题,在查资料的时候看到很多weighted cluster,原来是加权聚类的意思,仔细想想这个“加权”是什么个意思嘛。

回想起初中的加权平均数,这个跟算术平均数的区别又是什么呢?
举个例子,假设在某次比赛,同学评分90,老师评分85,专家评分80,但是显然专家评分应该占得比重比较高,因为是专家,评判得更标准,假设同学评分10%,老师30%,专家60%,
那么这个同学的算术平均得分是:(90+80+85)/3=85,
加权平均数是:(90*10%+85*30%+80*60%)= 82.5

说白了,这个加权其实相当于是前面的 系数,用来表示变量的比重。

Pseudo加权(Pseudo Weighting)技术通常用于信号处理、机器学习和网络通信等领域,其核心思想是通过对数据或信号进行加权处理,以模拟某种理想条件或增强特定特征。虽然“Pseudo加权”在不同上下文中有不同的具体实现方式,但其基本原理是通过构造一个加权函数或权重矩阵,使系统在处理非理想条件下的数据时仍能保持良好的性能。 在**机器学习领域**,Pseudo加权常用于半监督学习中的伪标签(Pseudo Labeling)技术。通过为未标记样本分配置信度较高的伪标签,并结合原始标记数据进行模型训练,从而提升模型的泛化能力。权重的设置通常基于模型对未标记样本预测结果的置信度,高置信度样本获得更高的权重[^3]。 在**视频异常检测**中,Spatio-Temporal Pseudo-Anomaly Generation(ST-PAG)方法利用伪异常生成技术,通过合成时空异常样本增强模型对真实异常的检测能力。其中,Pseudo加权可能用于调节合成异常样本在训练过程中的贡献程度,从而提升模型的鲁棒性和检测精度[^1]。 在**通信网络**中,虽然未直接提及“Pseudo加权”,但类似的思想可用于流量调度和资源分配。例如,PTN(Packet Transport Network)技术通过标签转发和OAM机制优化网络资源的利用效率,Pseudo加权可用于模拟不同业务流量的优先级,从而优化QoS策略[^4]。 ### 示例代码:伪标签加权实现 以下是一个简化的伪标签加权示例,展示如何在半监督学习中使用伪标签并为其分配权重: ```python import numpy as np from sklearn.linear_model import LogisticRegression # 假设有部分标记数据 X_labeled, y_labeled 和大量未标记数据 X_unlabeled X_labeled = np.random.rand(100, 10) y_labeled = np.random.randint(0, 2, 100) X_unlabeled = np.random.rand(500, 10) # 训练初始模型 model = LogisticRegression() model.fit(X_labeled, y_labeled) # 对未标记数据进行伪标签预测 pseudo_labels = model.predict(X_unlabeled) pseudo_scores = model.predict_proba(X_unlabeled).max(axis=1) # 获取置信度 # 设置权重阈值,仅保留置信度高于0.9的样本 threshold = 0.9 high_confidence_mask = pseudo_scores > threshold X_pseudo = X_unlabeled[high_confidence_mask] y_pseudo = pseudo_labels[high_confidence_mask] # 合并标记数据与高置信度的伪标签数据 X_combined = np.vstack((X_labeled, X_pseudo)) y_combined = np.hstack((y_labeled, y_pseudo)) # 重新训练模型 model.fit(X_combined, y_combined) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值