SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks
中山大学
code: https://github.com/ZjjConan/SimAM
摘要
提出了一个概念上简单但非常有效的卷积神经网络(ConvNets)的注意机制模块。与现有的通道和空间注意模块相比,为特征层中的特征映射推断三维注意权值(即考虑空间和通道维度),而不在原始网络中添加参数。具体地说,基于一些神经科学理论优化一个能量函数,以找到每个神经元的重要性。进一步推导了能量函数的一个快速闭环形式的解,并证明了该解可以在小于十行的代码中实现。该模块的另一个优点是,大多数操作运算都是基于所定义的能量函数的解来选择的,从而避免了过多的结构调整。对各种视觉任务的定量评估表明,该模块能够灵活、有效地提高许多ConvNets的表示能力。
论文主要思想
作者认为影像注意力机制模块的一个重要因素是,权值生成方式,现有注意力往往通过子网络生成注意力权重,例如:SE通过GAP+FC