SLAM学习笔记(一)Lio-sam安装与运行 ubuntu18.04+ros melodic

本文介绍在Ubuntu18.04与ROSMelodic环境下部署LIO-SAM算法的过程,包括安装ROS依赖、安装LIO-SAM、下载数据集、运行与保存建图结果等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三维激光SLAM入门 Lio-sam安装与运行 ubuntu18.04+ros melodic



前言

最近在学习激光SLAM,本文将介绍了ubuntu18.04+ros melodic下部署复现LIO-SAM的过程。2020年TIxiaoshan在IROS发表了Lio-sam算法,LiO-sam是Lego-Loam的拓展版本,添加了IMU预积分因子和GPS因子,Loam与Lego-Loam纯靠激光雷达点云信息SLAM,Lio-sam结合了Lidar、IMU与GPS


一、环境要求

我的环境:
ubuntu18.04
ROS melodic

二、复现步骤

1.安装ROS依赖

代码如下:

sudo apt-get install -y ros-melodic-navigation
sudo apt-get install -y ros-melodic-robot-localization
sudo apt-get install -y ros-melodic-robot-state-publisher

Lio-sam中使用了因子图优化,在此对因子图优化库gtstam进行安装
浏览器中复制下方网址下载gtstam

https://github.com/borglab/gtsam/archive/4.0.2.zip

打开终端,对压缩包进行解压和安装

cd ~/Downloads/ && unzip gtsam.zip -d ~/Downloads/
cd ~/Downloads/gtsam-4.0.2/
mkdir build && cd build
cmake -DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF ..
sudo make install -j8

2.安装Lio-sam

首先,创建新的工作空间:

makdir -p ~/catkin_ws/src
cd ~/catkin_ws
catkin_make
echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

在工作空间下克隆Lio-sam工程,安装lio-sam
(为加速下载clone处加国内代理网址https://ghproxy.com/)

cd ~/catkin_ws/src
git clone https://ghproxy.com/https://github.com/TixiaoShan/LIO-SAM.git
cd ..
catkin_make

3.下载给定数据集

在这里我给出作者提供的数据集中的walk数据集(3.7G)
链接:https://pan.baidu.com/s/1248HkF08hNefYPGO4jm2xQ
提取码:tk8w
下载完成数据集casual_walk.bag后,保存到~/catkin_ws/src/data

4.运行Lio-sam

roslaunch lio-sam run.launch

5.播放数据包

rosbag play ~/catkin_ws/src/data/casual_walk.bag

开始播放数据包后,rviz即可自动显示当前动态建图画面摸鱼高手学ML的图片

5.保存Pcd建图结果

首先,需要修改params.yaml中的参数。params.yaml在~/catkin_ws/src/LIO-SAM/config文件夹下。修改该文件中SavePCD:true 和保存地址。
然后,为了避免保存还没完成,ros就已经关闭了节点,需要设置_TIMEOUT_SIGINT的值。按如下命令打开文件:

sudo gedit /opt/ros/melodic/lib/python2.7/dist-packages/roslaunch/nodeprocess.py

在文件中找到_TIMEOUT_SIGINT,并设置为100秒。
这样,在命令窗口中按下Ctrl+C来结束run.launch的运行时,便会自动将pcd文件保存到指定地址。

总结

本文对复现Lion-Sam算法进行了总结,本文参考了博主摸鱼高手学ML的一篇文章
原文链接:https://blog.csdn.net/qq_41690864/article/details/118711743,对其中一些踩坑的地方进行了优化。
本文也是本人第一篇博文,如有侵权立删,谢谢您的阅读!

<think>嗯,用户提到在复现LIO-SAM时遇到问题,需要帮助解决。首先,我得回忆LIO-SAM的基本情况。它是个结合激光雷达、IMU和GPS的SLAM系统,依赖GTSAM库进行优化。用户可能在环境配置、数据准备或参数调整上遇到问题。 根据引用中的信息,用户可能遇到的问题包括环境配置错误,比如Ubuntu版本和ROS的兼容性。比如,LIO-SAM需要Ubuntu 18.04ROS Melodic,如果用户用的是其他版本,可能会出现兼容性问题。这时候需要检查系统版本是否正确,并确保所有依赖库如GTSAM、PCL等安装正确。特别是GTSAM的版本,可能用户安装了最新版,而LIO-SAM需要特定的4.0.3版本,这需要确认。 数据准备方面,用户可能使用了不兼容的数据包。引用里提到需要特定的传感器话题名称,如果用户的数据包话题名称不符,就需要在launch文件中修改。此外,时间同步问题也可能导致数据无法正确融合,可能需要使用像imu_utils这样的工具来校准IMU数据。 参数调整也是个常见问题。不同的传感器配置需要调整参数,比如雷达的线数、IMU的频率等。用户可能需要根据自己设备的参数修改config目录下的配置文件,比如点云降采样参数或运动补偿参数。如果建图出现漂移,可能需要调整GPS的权重或检查IMU和雷达的外参标定是否正确。 另外,编译错误也是常见的。比如C++版本不兼容,用户需要检查CMakeLists.txt中的C++标准设置是否为C++14。依赖缺失的话,需要根据报错信息安装相应的库,比如GeographicLib。 运行时的具体问题,比如没有点云显示,可能是因为rviz配置不正确,需要检查话题名称是否匹配。GPS初始化失败可能需要检查GPS数据的有效性和坐标系设置。高频振动问题可能需要调整IMU的噪声参数或增加运动约束。 用户提供的引用中提到了多个解决方案,比如修改汇总、适配自己数据集的方法,这些都需要整合到回答中。特别是引用3中的常见问题解决方案,可能包含针对特定错误的处理方法。 总结下来,回答需要分步骤,先环境配置,再数据准备,参数调整,再到编译和运行中的具体问题,每个部分给出可能的问题和解决方案,并引用提供的资料作为支持。同时,提醒用户注意版本兼容性、数据格式匹配和参数调整的重要性,确保他们能步步排查问题,成功复现LIO-SAM。</think>### LIO-SAM 复现问题及解决方案 以下整理常见问题及解决方案,结合引用内容和实践总结: --- #### **1. 环境配置问题** - **问题1:Ubuntu版本ROS兼容性** LIO-SAM要求**Ubuntu 18.04 + ROS Melodic**,若使用Ubuntu 20.04/ROS Noetic需修改`CMakeLists.txt`和`package.xml`中的依赖版本[^2]。 **解决方案**: 1. 检查系统版本和ROS发行版是否匹配; 2. 若使用高版本系统,需手动替换`OpenCV`、`PCL`等库的依赖路径。 - **问题2:GTSAM安装错误** LIO-SAM依赖**GTSAM 4.0.3**,直接安装最新版可能引发兼容性问题[^1]。 **解决方案**: ```bash git clone https://github.com/borglab/gtsam.git cd gtsam && git checkout 4.0.3 mkdir build && cd build cmake .. && make -j$(nproc) sudo make install ``` --- #### **2. 数据准备问题** - **问题3:传感器数据格式不匹配** LIO-SAM要求输入数据包含**激光雷达、IMU、GPS话题**,且话题名称需`params.yaml`致[^4]。 **解决方案**: 1. 检查ROS数据包的话题名称,使用`rostopic list`确认; 2. 修改`params.yaml`中的`pointCloudTopic`、`imuTopic`等字段,数据包对齐。 - **问题4:IMU雷达时间未同步** 若IMU和激光雷达时间戳未对齐,会导致运动补偿失效,建图漂移。 **解决方案**: 1. 使用`imu_utils`工具校准IMU的时间偏移; 2. 在`params.yaml`中设置`useImuHeadingInitialization: true`以启用IMU初始化[^3]。 --- #### **3. 编译运行问题** - **问题5:编译时报C++版本错误** 若出现`C++14`相关错误,需强制指定编译器版本。 **解决方案**: 在`CMakeLists.txt`中添加: ```cmake set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) ``` - **问题6:运行时无点云显示** Rviz中未显示点云地图,可能是话题未订阅或坐标系错误。 **解决方案**: 1. 在Rviz中手动添加`/laser_cloud_surround`话题; 2. 检查`tf`树是否完整,确保`map`→`odom`→`base_link`坐标系存在。 --- #### **4. 建图效果问题** - **问题7:建图漂移或抖动** 可能由IMU噪声参数不准确或GPS信号丢失导致。 **解决方案**: 1. 在`config/params.yaml`中调整`imuAccNoise`和`imuGyrNoise`; 2. 增加GPS权重:设置`gpsWeight: 1.0`并启用`useGPS: true`。 - **问题8:GPS初始化失败** 若GPS数据未触发初始化,需检查数据有效性。 **解决方案**: 1. 确保GPS话题`/gps/fix`已发布且坐标系为`WGS84`; 2. 在`params.yaml`中降低`gpsCovThreshold`至合理值(如`2.0`)[^3]。 --- #### **5. 自定义数据集适配** - **问题9:适配自采数据集时轨迹偏移** 需标定雷达-IMU外参和传感器延时。 **解决方案**: 1. 使用`lidar_align`工具标定外参; 2. 在`params.yaml`中设置`extrinsicRot`和`extrinsicTrans`参数。 ---
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值