原坐标[u,v][u, v][u,v]
(xyz)=(a11a12a13a21a22a23a31a32a33)(uv1)
\begin{pmatrix}
x\\
y\\
z
\end{pmatrix} = \begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{pmatrix}\begin{pmatrix}
u\\
v\\
1
\end{pmatrix}
⎝⎛xyz⎠⎞=⎝⎛a11a21a31a12a22a32a13a23a33⎠⎞⎝⎛uv1⎠⎞
x=a11u+a12u+a13uy=a21u+a22u+a23uz=a31u+a32u+a33u
\\
x = a_{11}u + a_{12}u + a_{13}u \\
y = a_{21}u + a_{22}u + a_{23}u \\
z = a_{31}u + a_{32}u + a_{33}u \\
x=a11u+a12u+a13uy=a21u+a22u+a23uz=a31u+a32u+a33u
变换后的坐标
x′=xz=a11u+a12u+a13ua31u+a32u+a33uy′=yz=a21u+a22u+a23ua31u+a32u+a33u
\\
{x}' = \frac{x}{z} = \frac{a_{11}u + a_{12}u + a_{13}u}{a_{31}u + a_{32}u + a_{33}u} \\
\\
{y}' = \frac{y}{z} = \frac{a_{21}u + a_{22}u + a_{23}u}{a_{31}u + a_{32}u + a_{33}u}
x′=zx=a31u+a32u+a33ua11u+a12u+a13uy′=zy=a31u+a32u+a33ua21u+a22u+a23u
透视变换
最新推荐文章于 2023-04-06 18:59:08 发布