《神经网络与深度学习》——邱锡鹏(读书笔记_C2_1)

本文介绍了机器学习的基本概念,包括其工作原理、三个核心要素(模型、学习准则和优化算法)及其作用。并通过示例图详细阐述了机器学习系统的运作流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


版权声明:本文为博主原创文章,如需转载请贴上原博文链接:https://blog.csdn.net/u011628215/article/details/114982226


前言:由于公司项目的需要,自学深度学习相关的知识,而深度学习问题又是一个机器学习问题,为了搞清楚其中的原理,下面就对《神经网络与深度学习》第二章前两节的内容做一个小结,以便后续的学习研究。

 

1.简单的机器学习

为了说明一下机器学习的工作原理,先看一张简单的图(图1);简单来说,输入的是众多数据(特征向量等),把它们丢到黑盒中,输出的是我们想要知道的结果。机器学习所需要做的事就是,把黑盒打开,看看其中的原理是啥,或者说,是一种什么规律(模型 / 函数),使得输入的x,但得到的是y。

图1 简单的机器学习
图1 简单的机器学习

 

2.机器学习的三个基本要素

机器学习是从有限的观测数据中学习(或“猜测”)出具有一般性的规律,并可以将总结出来的规律推广应用到未观测样本上。机器学习方法可以粗略地分为三个基本要素:模型、学习准则和优化算法。[1]

机器学习的三个基本要素如图2所示。

图2 机器学习的三个基本要素
图2 机器学习的三个基本要素

 那这三个基本要素是如何在机器学习系统中运作的呢?通过补全图三(机器学习系统示例)来说明整个机器学习的流程,如图4所示。

图3 机器学习系统示例
图3 机器学习系统示例
  • 如何寻找这个“最优”的函数\large f^{*}(x)是机器学习的关键,一般需要通过学习算法A来完成。这个寻找过程通常称为学习或训练过程
  • 如何找到最优的模型\large f^{*}(x)就成了一个最优化问题,机器学习的训练过程其实就是最优化问题的求解过程。
图4 机器学习系统示例扩充
图4 机器学习系统示例扩充

通过整个流程图也就清楚了,机器学习的目标就是找到这个“最优”模型\large f^{*}(x),而这个模型的效果好坏则需要通过期望风险\large R\left ( \theta \right )来衡量,并且期望风险越小说明模型\large f^{*}(x)越好,越能够近似真实映射函数\large g\left ( x \right ),也就越能够表明输入样本和输出样本之间的关系。

 

3.小结

简单总结机器学习的三个基本要素在机器学习中所起的作用,后续会继续补充。

 

参考文献:

1.邱锡鹏.神经网络与深度学习[M].机械工业出版社:北京,2020.3:26.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值