1.数据库SQL语句优化
- 少用in关键字,用exist替换in关键字;
- 用“>=”替换“>”,用exists替换distinct;
- 用union、in替换or,in 和 not in 也要慎用,否则会导致全表扫描;;
- select语句中避免使用*,用truncate替换delete;
- 用where子句替换having子句;
- 使用别名可以大大提高查询效率;
- 只选取想要的属性字段,尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理;
- 考虑在where、order by 、group by涉及的列上建立索引;
- 尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描;
- 尽量避免在 where 子句中使用 != 或 <> 操作符,否则将引擎放弃使用索引而进行全表扫描;
- 应尽量避免在 where 子句中使用 or 来连接条件,如果一个字段有索引,一个字段没有索引,将导致引擎放弃使用索引而进行全表扫描;
- 尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描;
- 应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描;
- 不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引;
- 在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致;
- Update 语句,如果只更改1、2个字段,不要Update全部字段,否则频繁调用会引起明显的性能消耗,同时带来大量日志;
- 对于多张大数据量(这里几百条就算大了)的表JOIN,要先分页再JOIN,否则逻辑读会很高,性能很差;
- 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要;
- 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连 接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
- 尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
- 避免频繁创建和删除临时表,以减少系统表资源的消耗。临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件, 最好使用导出表。
- 在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
- 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
- 尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
- 与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。
2.MySql性能优化
- Mysql数据库优化原则:
- 减少数据访问(减少磁盘访问);
- 返回更少数据(减少网络传输或磁盘访问);
- 少交互次数(减少网络传输);
- 减少服务器CPU开销(减少CPU及内存开销);
- 利用更多资源(增加资源);
- Mysql数据库优化顺序:
- 优化SQL和索引;
- 加缓存redis、memcache;
- 主从复制、或者主主复制,读写分离;
- 使用mysql自带的分区;
- 根据模块耦合度垂直分表;
- 针对数据量大的表水平切分;