【C++】Tarjan算法

Tarjan算法解析:强连通分量与割点割边检测
本文详细介绍了Tarjan算法在有向图中求强连通分量的原理和实现过程,包括深度优先搜索、栈的使用以及关键变量dfn、low、visit和color的维护。此外,还扩展讨论了如何利用该算法在无向图中检测割点和割边,讲解了割点和割边的定义,并给出了相应的代码实现。

相关介绍

强连通分量

在有向图中,如果某一个子图的任意两点都是连通的则该子图是一个强连通分量。

算法简介

TarjanTarjanTarjan算法有好几种,都是以TarjanTarjanTarjan命名的,这里讲的TarjanTarjanTarjan指求强连通分量的TarjanTarjanTarjan算法,他以深度优先搜索的方式对图进行染色,进而求得强连通分量。

算法思想

在一个顶点数为nnn的图中,TarjanTarjanTarjan算法需要维护一个顶点栈和几个数组。

  1. stack Sstack\ Sstack S表示顶点栈。
  2. dfn[ ]dfn[\ ]dfn[ ]数组,dfn[i]dfn[i]dfn[i]表示第iii个顶点的深度搜索次序。
  3. low[ ]low[\ ]low[ ]数组,low[i]low[i]low[i]表示顶点iii回溯时所能回溯到的最小dfndfndfn
  4. visit[ ]visit[\ ]visit[ ]数组,visit[i]visit[i]visit[i]表示顶点iii是否在栈中。
  5. color[ ]color[\ ]color[ ]数组,color[i]color[i]color[i]表示顶点iii在哪一个强连通分量,相同的强连通分量染色相同。

算法流程

void Tarjan(int u){
	dfn[u]=low[u]=++cnt;//初始化dfn=low
	S.push(u);//顶点u入栈
	visit[u]=1;
	for(int i=head[u];i;i=last[i]){//遍历u的所有边
		int v=to[i];//v是以u为起点的边的终点顶点
		if(!dfn[v]){//如果还没有访问过v
			Tarjan(v);
			low[u]=min(low[u],low[v]);
		}else if(visit[i]){
			low[u]=min(low[u],dfn[v]);
		}
	}
	if(dfn[u]==low[u]){
		color[u]=++sum;//颜色+1,用相同的颜色对同一个连通分量染色
		visit[u]=0;//标记为未访问
		while(S.top()!=u){
			color[S.top()]=color[u];
			visit[S.top()]=0;//标记为未访问
			S.pop();
		}
	}
}

扩展

TarjanTarjanTarjan在除了有向图中可以求强连通分量,在无向图中还可以求割点和割边(桥)。

割点:无向图中去掉某一个点及其连接的边会破坏其连通性的点。

割边:去掉无向图中某一条边会破坏连通性的边。

割边连接的点必为割点,但是割点连接的边不一定是割边。

割点

使用TarjanTarjanTarjan算法求割点,若有边u→vu\to vuv,如果low[v]>=dfn[u]low[v]>=dfn[u]low[v]>=dfn[u]则说明vvv无法连接到比uuu更早的点,说明uuu是割点。特别的,根节点无法通过此关系判断是否为割点,根节点需要判定子树大于等于222则为割点。

void Tarjan(int u,int fa){
	int child=0;//子树个数
	dfn[u]=low[u]=++cnt;//初始化dfn=low
	for(int i=head[u];i;i=last[i]){//遍历u的所有边
		int v=to[i];//v是以u为起点的边的终点顶点
		if(!dfn[v]){//如果还没有访问过v
			Tarjan(v,u);
			low[u]=min(low[u],low[v]);
			if(low[v]>=dfn[u]&&u!=root) cut[u]=1;//记录割点
		}else if(dfn[u]>dfn[v]&&v!=fa){
			low[u]=min(low[u],dfn[v]);
		}
	}
	if(u==root&&child>=2) cut[u]=1;
}

割边

判断割边,只需要将上述代码的if(low[v]>=dfn[u]&&u!=root)改为if(low[v]>dfn[u]&&u!=root)即可求割边数量。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cout0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值