使用uplift模型来得到更好的个性化营销结果(2)

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Abhay Pawar

编译:ronghuaiyang

导读

看看uplift模型是怎么实现的。

在本系列博客的[第1部分](https://medium.com/@abhayspawar/ ft-models-for-better-marketing- campaigns-part1-b491292e4c80)中,我们研究了D2C(电子邮件、短信等)活动的运作方式,并讨论了模型如何帮助识别一群客户中的“可说服对象”。在这篇文章中,我们将看看这些模型是如何构建的。

Uplift模型是一组用于相同目的的建模方法的总称。Uplift模型利用之前的活动数据来识别高lift的客户,使我们能够在下一次活动迭代中锁定他们。关于过去的活动数据,我们需要几件事情:目标组和控制组客户的名单,他们对活动的反应(通常是基于客户是否购买产品的)和描述一个客户的所有相关的变量(年龄、收入等)。

模型背后的思想

我们的最终目标是预测每个客户的lift。但是,同一时间的一组客户要么在控制组中,要么在试验组中,因此我们不能直接计算一组客户的lift。但是,这真的是个问题吗?我们真的需要同一个客户在两个组中的表现来计算lift吗?我们想知道哪一类客户会给予高的lift,而这一“群体”是由客户的特征(年龄、收入等)来定义的。所以,只要我们的控制组和试验组中都有来自不同年龄和收入群体的客户,我们就可以很好地计算出一个群体的lift。例如,我们要计算年龄小于25岁和收入为3万美元的客户的lift。我会从两个组中选择这些样本,计算它们的响应率,它们的差值就是lift。我并不需要在两个组中都包含相同的客户,但是我需要在两个组中包含具有相同特征的客户。

现在,假设我们只有两个变量:年龄和收入。我们想根据这两个变量找到高lift的群体。我们可以在两个变量中创建4个箱子。如,年龄<25岁,25岁至35岁,35岁至45岁,>45岁。使用这两个绑定的变量,我们可以总共创建4×4=16组。对于每一组,我们可以计算lift,并很容易地找到高lift的组。这个高lift的群体和其他具有相同特征的上次没有被锁定(或被锁定但没有转化)的客户将构成我们下一次活动的目标群体。我不知道你是否明白,我们在这里构建的只是一个lift模型,尽管是一个非常特别的模型。它只根据年龄和收入告诉你哪些是高lift的客户,以及谁应该成为目标。但是,当我们有50个与客户特征相关的变量时,就不能采用相同的方法了。

Uplift模型: 双模型方法

这个双模型方法最容易理解和应用。在此,我们简单地建立了两个分类模型,一个在实验样本上,另一个在控制样本上。这些模型告诉我们客户在各自的样本中响应的可能性。

在建立这两个模型之后,你可以对所有的客户进行评分,每个客户有两个概率:St和Sc,如图所示。显然,这些都是构建这些模型的特征。

现在,有趣的部分来了。你知道,St和Sc是客户在分别在试验组和控制组的作出反应的可能性。因此,St-Sc只不过是客户期望的lift!一旦我们知道了预期的lift,就很容易将客户分成我们在上一篇文章中讨论过的四组。在这四种产品中,高St-Sc可以识别出有说服力的产品。

虽然建立这样的uplift模型看起来没什么大不了的,但离我们的目标还差得很远。Uplift模型需要大量的数据来保证单个模型不存在噪声。用概率差来预测lift,如果把两种概率的误差累加起来,就会产生很高的误差。因此,建立不过拟合的模型是很重要的。根据选择的特征的噪声的大小,可能提升或破坏uplift模型。我们将在下一篇文章中讨论这个问题,为了保持连续性,我们将直接讨论模型的验证。

模型验证

如果你理解了我们现在所做的,那么模型验证对你来说就是小菜一碟。为了验证模型,你需要根据St-Sc将所有客户划分为10个箱子。Bin 1是St-Sc最高的Bin, Bin 10是最低的Bin。这些箱子将包含一些在试验样本中的客户和一些在控制样本中的客户。计算每个箱子的试验组反应率(Rt)和对照组反应率(Rc)。Rt-Rc是你在那个箱子里的实际lift,St-Sc是预测的lift。现在,绘制每个箱子的Rt-Rc,并检查是否有什么趋势。以下是一个例子:

绿色的线是活动的整体提升,大约是3%,红色的线是每个bin的实际lift。最上面的两个bin我们的客户的lift是总体的lift的两倍。具有高lift(1到7)的bin可以说是装有可说服的客户。具有负lift(10)的bin装的是不要打扰的客户,其他bin(8,9)包含了Sure-things的人群以及Lost-Causes的人群。

—END—

英文原文:https://medium.com/@abhayspawar/uplift-models-for-better-marketing-campaigns-part-2-b491292e4c80

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值