目录
前言
Hadoop的三个核心模块:HDFS、MapReduce(简称MR)和Yarn,其中HDFS模块负责数据存储,MapReduce负责数据计算,Yarn负责计算过程中的资源调度。在存算分离的架构中,三者越来越多的同其他框架搭配使用,如用Spark替代MapReduce作为计算引擎或者k8s替换Yarn作为资源调度工作。虽然已经有了许多替代框架,MapReduce的计算原理仍具有重要意义,掌握MR对于学习其他计算框架甚至自研计算框架,都非常有帮助。
基本知识
本文涉及的名词解释
- Hadoop:大数据存储计算框架,核心包括HDFS、MapReduce和Yarn
- HDFS:分布式文件系统,包括
- namenode:存储系统主节点,存储数据库的存储信息
- datanode:负责数据块的实际存储
- MapReduce: 分布式计算引擎,包括mapper、reducer、shuffle等过程;
- Yarn:资源调度框架,由ResourceManager、NodeManager、ApplicationMaster、Container、Scheduler 等几个组件构成
- ResourceManager:全局的资源管理器,负责整个系统的资源管理
- NodeManager:每个计算节点上的资源和任务管理器
- ApplicationMaster:每个应用程序的管理器,管理由ResourceManager分配的NodeManager节点
- Container:NodeManager节点中内存、CPU等资源的抽象