详解MapReduce&Yarn工作原理及优化建议

本文详细介绍了MapReduce和Yarn的工作原理,包括任务提交、任务计算的过程,以及如何进行小文件、shuffle和mapper/reducer并行度的优化。通过对MapReduce的深入理解,有助于提升大数据处理的效率和性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

基本知识

MapReduce工作流程

任务提交(Yarn)

任务计算(MapReduce)

相关优化

推荐学习


前言

Hadoop的三个核心模块:HDFS、MapReduce(简称MR)和Yarn,其中HDFS模块负责数据存储,MapReduce负责数据计算,Yarn负责计算过程中的资源调度。在存算分离的架构中,三者越来越多的同其他框架搭配使用,如用Spark替代MapReduce作为计算引擎或者k8s替换Yarn作为资源调度工作。虽然已经有了许多替代框架,MapReduce的计算原理仍具有重要意义,掌握MR对于学习其他计算框架甚至自研计算框架,都非常有帮助。

基本知识

本文涉及的名词解释

  1. Hadoop:大数据存储计算框架,核心包括HDFS、MapReduce和Yarn
  2. HDFS:分布式文件系统,包括
    1. namenode:存储系统主节点,存储数据库的存储信息
    2. datanode:负责数据块的实际存储
  3. MapReduce: 分布式计算引擎,包括mapper、reducer、shuffle等过程;
  4. Yarn:资源调度框架,由ResourceManager、NodeManager、ApplicationMaster、Container、Scheduler 等几个组件构成
    1. ResourceManager:全局的资源管理器,负责整个系统的资源管理
    2. NodeManager:每个计算节点上的资源和任务管理器
    3. ApplicationMaster:每个应用程序的管理器,管理由ResourceManager分配的NodeManager节点
    4. Container:NodeManager节点中内存、CPU等资源的抽象
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值