【研究生课题】 端侧多模态大模型的理论与实践:模型压缩与高效架构的协同研究

摘要

多模态大型语言模型(Multimodal Large Language Models, MLLMs)通过融合视觉与语言信息,在众多任务中展现出卓越性能。然而,其巨大的模型体积和高昂的计算需求,使得将它们部署到手机、智能眼镜等资源受限的端侧设备成为一项严峻挑战。本文旨在系统性地研究实现高效端侧多模态大模型的关键技术。我们首先剖析了端侧部署面临的性能、功耗与内存的“三难困境”(Trilemma)。接着,从理论层面深入探讨了两条核心路径:高效多模态架构设计高级模型压缩技术。在架构层面,我们分析了轻量级视觉编码器与小型语言模型的耦合策略。在压缩层面,我们重点阐述了基于Hessian信息的后训练量化方法(如GPTQ)与知识蒸馏的数学原理。最后,本文提供了一套完整的实证分析流程,展示了如何构建一个由MobileViT和Gemma-2B组成的多模态模型,并通过PEFT微调与4-bit量化,最终实现一个可在端侧高效运行的视觉问答模型。

第一部分:理论基础与核心挑战

1. 端侧部署的“三难困境”

在端侧设备上部署MLLMs,必须在三个相互制约的因素之间取得平衡:

  • 模型性能(Performance): 模型必须保持足够高的准确率以满足用户需求。

  • 推理延迟(Latency): 响应速度必须足够快,以实现实时交互。

  • 内存与功耗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值