linux部署controlnet

本文档介绍了在Linux系统中使用Python3.7、CUDA10.1和NVIDIA驱动418.87来部署控制网络的过程。涉及的关键库包括PyTorch、TorchVision、HuggingFace等,并详细说明了如何安装、编译和解决与最新库版本不兼容的问题。同时提到了针对oneformer模型的更新和Detectron2的源码编译安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

按照源码进行部署,方便接口调用。

环境:python37+cuda10.1+nvdia driver 418.87

1.安装

torch==1.8.1_cu101

torchvision==0.9.1_cu101

tokenizers==0.11.6

transformers==4.20.0

huggingface-hub==0.2.0

timm

ftfy

sentencepiece

open_clip==2.16.0 自行编译一下,在git上下载源码,用python setup.py install --user安装,在requirement中降低pytorch的版本,改成>1.8

opencv-python

pytorch_lightning

更新libstdc++.so.6 1.3.9

更新glibc  2.18

addict

yapf

prettytable

omegaconf==2.1.1

xformers==0.0.2

更改ldm/modules/encoders/modules.py中88行的openai的clip的地址

有几处autocast和pytorch1.8其冲突的几个,全部删掉autocast的推理即可。

ldm/modules/diffusionmodules/util.py", line 126 注掉autocast,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值