麻醉医生的深度学习之旅 P2:CIFAR10彩色图片识别

刚刚过去的周末举行了 X9 高校赛艇联赛,我倍感幸运,在大叔的年纪竟被教练选入了混八队伍。虽说结果不太理想,甚至为此略感失落,不过也收获了宝贵的比赛经验。接触赛艇一个多月以来,我深感这是一项既能减肥又颇为优雅的运动,它同时还是团队、技巧与力量的完美结合,散发着浓厚的艺术魅力。两站比赛已经成为过去时,下个月还有第三站在等着我们。依旧用朋友圈的那条动态来激励自己,“Go big or go home!!!”。未来一个月会很苦,需要兼顾训练与学习,但我坚信这段经历会给我打下深刻的烙印!

言归正传,这是我参加《365天深度学习训练营》的第二周,与此同时,最近我还在学习MMDetection做实例分割,跑通Demo之后,加上这回P2的顺利实施,我已经开始逐步建立起信心。本期blog我主要通过注释每段代码来强化理解与记忆,那么接下来,就请随我一同回顾此次旅程吧!

此次实验为机器学习经典案例:基于CIFAR10数据集的彩色图片识别实验

实验目的:

  • 学习如何编写一个完整的深度学习程序
  • 学会推导卷积层与池化层的计算过程
  • 重点是学会基于torch.nn构建CNN网络

实验环境:

  • 语言环境:python 3.8
  • 编译器:pycharm
  • 深度学习环境:
    • torch ==2.2.2
    • torchvision ==0.17.2
    • cpuonly

实验流程:

一、前期准备

1. 导入"APP",设置 GPU
# 导入PyTorch库,这是一个广泛用于深度学习的框架
# 将PyTorch的神经网络模块导入,并简称为nn(neural network),方便后续使用其中的各种神经网络层等
# 导入matplotlib的绘图模块,用于数据可视化,比如绘制图形等
# torchvision通常用于导入与计算机视觉相关的功能和数据集

import torch 
import torch.nn as nn 
import matplotlib.pyplot as plt 
import torchvision 

# 设置硬件设备,如果有GPU则使用,没有则使用cpu 
# 如果有则将device设置为"cuda",表示将在GPU上进行计算,这样可以加速深度学习模型的训练和推理等操作

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
device
🪧代码输出
device(type='cpu')
2. 加载数据
  • 通过torchvision中的dataset下载CIFAR10数据集,并划分好训练集与测试集
# torchvision.datasets.CIFAR10:调用PyTorch中用于加载 CIFAR10 数据集的类
# 'data':指定数据集存储的路径
# train=True:训练集
# transform=torchvision.transforms.ToTensor():将数据类型转换为张量(Tensor)格式
# download=True:如果数据集在指定路径下不存在,则自动下载该数据集

train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), 
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), 
                                      download=True)
🪧代码输出
Files already downloaded and verified
Files already downloaded and verified
  • 通过DataLoader加载数据,并设置好基本的batch_size
# batch_size:定义每一批数据的大小
# torch.utils.data.DataLoader:创建一个数据加载器
# train_ds:训练数据集
# batch_size=batch_size:使用前面定义的批量大小
# shuffle=True:在每个训练周期开始前对训练数据进行随机打乱,有助于提高训练效果,避免模型学习到数据的特定顺序
# 测试集通常不需要打乱数据顺序
# 这样就创建好了训练集和测试集的数据加载器,以便在训练和评估模型时能够以指定的批量大小方便地获取数据

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度

imgs, labels = next(iter(train_dl))
imgs.shape
🪧代码输出
torch.Size([32, 3, 32, 32])
3. 数据可视化
# 导入numpy库,用于数组操作等
# 创建一个新的图形,指定图形的大小为宽20、高5(英寸)
# 遍历一个名为imgs的数据集中的前20个图像

import numpy as np
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):

    # 维度缩减:将图像数据转换为numpy数组,并进行维度变换,通常是将通道维度调整到最后
    # 将整个图形区域划分成210列的子图布局,并选择当前要绘制的是第i+1个子图
    # 在当前子图中显示转换后的图像,使用指定的颜色映射(这里是二值颜色映射)
    # 关闭坐标轴的显示
    
    npimg = imgs.numpy().transpose((1, 2, 0))
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
#plt.show()  如果使用的是Pycharm编译器,加上
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值