深度学习笔记----三维卷积及其应用(3DCNN,PointNet,3D U-Net)

目录

1.什么是三维卷积

1.1 三维卷积简介

1.2 三维卷积的工作原理

2,三维卷积核多通道卷积的区别

2.1 多通道卷积

 2.2 三维卷积和多通道卷积之间的区别

2.3 总结

3,三维卷积的应用

3.1 视频分类

3.2 点云分类

3.2.1 PointNet网络亮点

3.2.2  PointNet网络结构

3.3 图像分割(U-Net)

3.3.1 二维的U-Net

3.3.2 三维的U-Net

1.什么是三维卷积
1.1 三维卷积简介
      二维卷积是在单通道的一帧图像上进行滑窗操作,输入是高度H*宽度W的二维矩阵。三维卷积输入多了深度C这个维度,输入是高度H*宽度W*深度C的三维矩阵。在卷积神经网络中,网络每层的宽度是由每一层特征图图的通道数绝决定的。多通道卷积看起来和三维卷积有一样的深度,但两者之间是有本质的区别的。

      下面就是 3D 卷积,其过滤器深度小于输入层深度(核大小<通道大小)。因此,3D 过滤器可以在所有三个方向(图像的高度、宽度、通道)上移动。在每个位置,逐元素的乘法和加法都会提供一个数值。因为过滤器是滑过一个 3D 空间,所以输出数值也按 3D 空间排布。也就是说输出是一个 3D 数据。
 

       在 3D 卷积中,3D 过滤器可以在所有三个方向(图像的高度、宽度、通道)上移动。在每个位置,逐元素的乘法和加法都会提供一个数值。因为过滤器是滑过一个 3D 空间,所以输出数值也按 3D 空间排布。也就是说输出是一个 3D 数据。三维卷积被普遍用在视频分类,三维医学图像分割等场景中。

1.2 三维卷积的工作原理
     首先我们看一下3D CNN是如何对时间维度进行操作的,如下图所示,我们将时间维度看成是第三维,这里是对连续的四帧图像进行卷积操作,3D卷积是通过堆叠多个连续的帧组成一个立方体,然后在立方体中运用3D卷积核。在这个结构中,卷积层中每一个特征map都会与上一层中多个邻近的连续帧相连,因此捕捉运动信息。
 

 注:3D卷积核只能从cube(立方)中提取一种类型的特征,因为在整个cube中卷积核的权值都是一样的,也就是共享权值,都是同一个卷积核(图中同一个颜色的连接线表示相同的权值)。我们可以采用多种卷积核,以提取多种特征 。

2,三维卷积核多通道卷积的区别
2.1 多通道卷积
 首先先看一下多通道卷积,如下图所示 ,这里多通道的卷积不同通道上的卷积核参数是不相同的。

具体的实现过程为:

多通道特征图大小公式:

 2.2 三维卷积和多通道卷积之间的区别
1)结构不一样:三维卷积核的大小为k*k*d,三维特征图的深度为L,一般d<L,由于卷积核本身是三维的(如下图所示),在三维的特征图上进行卷积时权重是共享的,输出时一个三维的特征图,所以和上面的多通道的卷积结构是不一样的。

                                                              三维卷积示意

                      &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值