迭代期望定律

转自:https://www.jianshu.com/p/e26d340b9c63

1.条件期望

1.1期望

离散随机变量期望

连续随机变量期望

对比平均值和期望

平时常见的多是平均数的概念,平均数和期望两者既有联系也有区别,也容易弄混。

  • 平均数是统计学概念,主体是特征样本。
  • 期望是概率论概念,主体是随机变量。
    平均数和期望可以通过大数定理联系起来:

掷骰子

用掷单个骰子的过程来展示大数定律,同时说明平均数(均值)和期望。随着投掷次数的增加,所有结果的均值趋于3.5(骰子点数的期望值)。不同时候做的这个实验会在投掷次数较小的时候(左部)会表现出不同的形状,当次数变得很大(右部)的时候,它们将会非常相似。

简而言之:

  • 概率是频率随样本数趋于无穷的极限
  • 期望是均值(平均数)随样本数趋于无穷的极限

1.2条件期望

条件期望

EX是对所有ω∈Ω,X(ω)取值全体的加权平均
E(X|Y=y)是局限在ω∈{ω:Y(ω)=y}时,X(ω)取值局部的加权平均
对于局部理解:按照Y的不同取值,整个样本空间Ω被划分为n个互不相容的事件(Ω=∑B(j))。因此E(X|Y=y)是在某一个{B(j),j∈N}上X(ω)的局部加权平均。
引用:左超-条件数学期望

对比EX、E(X|Y)、E(X|Y=y)

  • EX是一个数值
  • E(X|Y)是一个关于Y的函数,没有固定的y值,是一个随机变量
  • E(X|Y=y)随着y的取值不同而不同, 但是只要y确定, 一定是个定值
    Before we observe Y,we don't know the value of E(X|Y=y) so it is a random varible which we denote E(X|Y).因此(X|Y)是随机变量Y的函数,事实上,它只是局部平均{E(X|Y=y(j)),j∈N}的统一表达式。

引入E(X|Y)

显然E(X|Y=y(1)),E(X|Y=y(2)),....,依赖于Y=y(j),即依赖于全局样本空间的划分。这样,从样本空间Ω及对ω∈Ω可以变化的观点看,有必要引进一个新的随机变量,记为E(X|Y)。对于这个随机变量E(X|Y),当Y=y时它的取值为E(X|Y=y),称随机变量E(X|Y)为随机变量X关于随机变量Y的条件数学期望。
引用:左超-条件数学期望

1.3迭代期望定律

该定律研究的是E(E(X|Y))是什么

 

迭代期望定律

推导过程

  • 连续随机变量

迭代期望定律证明

证明中的 E(Y|x) 即 E(Y|X=x),即连续型期望公式中的 "x"
当给定条件X时, 条件期望 E(Y|X) 是一个随机变量,有自己的分布
当给定条件X=x时, 条件概率 E(Y|X=x) 是一个函数,可以记为h(x),像普通函数那样进行计算即可
两者联系即X会有一定的概率取值为x,此时E(Y|X=x) =h(x),按照 h 的运算法则即可

(一个随机变量的期望取决于分布,不同的随机变量有同样的分布的时候,期望是一样的,进一步说每个分布对应唯一的期望)

引用:谭升-条件期望

  • 离散随机变量

迭代期望定律证明

引用:《计量经济学及Stata应用》 陈强

  • Stata验证

     

    迭代期望定律

grilic.dta下载地址
如上所示,无条件期望等于条件期望的加权平均,权重为条件“X=x”的概率

1.4条件期望的性质

条件期望的性质

注:对于性质2,Y在条件里,因此g(Y)就失去随机性,故期望可以去掉
引用:siwingyang-条件期望与条件方差

2.条件方差

2.1方差

方差公式1

 

方差公式2

 

方差公式3

 

 

此处

u值

2.2条件方差

 

条件方差公式

 

条件方差公式


引用:siwingyang-条件期望与条件方差
引用:《计量经济学及Stata应用》 陈强

 

2.3方差分解

方差分解1

 

方差分解2

引用:siwingyang-条件期望与条件方差



作者:皮壹侠
链接:https://www.jianshu.com/p/e26d340b9c63
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

### Stata 中的大数定律模拟实现 在统计学中,大数定律表明随着样本数量的增加,样本均值会逐渐接近总体均值。为了验证这一原理并进行相关模拟,在 Stata 中可以通过编程生成大量随机数据,并观察其平均值的变化趋势。 以下是具体的方法和代码示例: #### 方法概述 1. 使用 `set seed` 设置随机种子以确保结果可重复。 2. 利用循环结构(如 `forvalues` 或 `while`)逐步增大样本量。 3. 随机生成服从某种分布的数据集(例如正态分布、均匀分布等),并通过函数计算每次迭代中的样本均值。 4. 将这些均值存储到一个新的变量中以便后续绘图或分析。 5. 绘制图表展示随样本量变化的趋势,从而直观体现大数定律的效果。 #### 示例代码 以下是一个完整的例子,演示如何利用 Stata 对大数定律进行模拟: ```stata clear all set obs 10000 // 设定总的观测次数为1万次 gen sample_mean = . // 创建用于保存每轮抽样得到的均值的新列 set seed 12345 // 固定随机数种子便于重现实验结果 local n_max = _N // 获取最大观测数目 scalar mu = 5 // 假设真实总体均值μ=5 scalar sigma = 2 // 总体标准差σ=2 // 循环遍历每一个可能的子样本大小i, 并记录对应的累积均值 forval i = 1/`=n_max' { qui gen rand_var_`i' = rnormal(mu',sigma') if _n<=`i' qui sum rand_var_`i', meanonly replace sample_mean = r(mean) in `i' } twoway line sample_mean _n /// , title("Law of Large Numbers Demonstration") /// ytitle("Sample Mean") xtitle("Number of Observations") /// legend(off) /// 移除图例框 ``` 上述脚本执行完毕之后将会绘制一条曲线表示当不断增加新加入个体后的整体算术平均值是如何稳定趋近于实际参数 μ 的过程[^2]。 #### 结果解释 运行以上程序后可以发现,尽管初始阶段由于样本较少而导致波动较大,但随着时间推移即更多独立同分布(iid) 数据被纳入考虑范围之内时,最终所获得的经验期望越来越逼近理论上的真值——这正是强大数法则的核心思想所在! ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值