用DPO定制Nova模型攻略!适配个性化应用场景需求

在2025年亚马逊云科技Summit New York City,亚马逊云科技宣布推出全新Amazon Nova定制化功能,并以开箱即用的recipes形式在Amazon SageMaker AI上可用。借助该功能,您可以在模型训练的整个生命周期(包括预训练、有监督微调及对齐阶段),对Amazon Nova Micro、Amazon Nova Lite和Amazon Nova Pro进行适配性调整。

本文将深入探讨这些定制recipes,并提供分步实施指南。

直接偏好优化(DPO)是一种对齐技术,可提供一种简单直接的方法,根据您的偏好来调整模型输出。

DPO采用提示词与两个回复(其中一个回复优于另一个)配对的方式,引导模型生成更能体现您期望的语气、风格或准则的输出内容。您可以根据数据量和成本考量,选择使用参数高效型DPO或全模型DPO来实施这项技术。定制后的模型可部署到Amazon Bedrock上,利用预置吞吐量进行推理。参数高效型版本支持按需推理。

Amazon Nova定制化功能可在Amazon SageMaker训练任务和Amazon SageMaker HyperPod中使用,让您能够灵活选择最适合自身基础设施和规模需求的环境。

下文将介绍使用Amazon SageMaker训练任务,对Amazon Nova Micro模型进行定制的简化方法。

解决方案概览

使用Amazon SageMaker训练任务,应用Amazon Nova定制化功能的工作流程包含以下步骤。

1.用户选择特定的Amazon Nova定制recipe,其提供全面的配置选项,用于控制Amazon Nova的训练参数、模型设置以及分布式训练策略。您既可以使用针对Amazon SageMaker AI环境优化过的默认配置,也可以根据需求自定义配置以尝试不同的设置。

2.用户向Amazon SageMaker AI控制界面提交API请求,并传递Amazon Nova recipe的配置信息。

3.Amazon SageMaker使用训练任务启动脚本,在托管计算集群上运行Amazon Nova recipe。

4.根据所选方案,Amazon SageMaker AI会调配所需的基础设施、协调分布式训练,并在训练完成后自动释放集群资源。

这一精简架构提供了全托管式的用户体验,让您能够借助简洁易用的recipes,快速定义Amazon Nova的训练参数并选择心仪的基础设施。Amazon SageMaker AI则负责端到端的基础设施管理,采用按使用量付费的定价模式,仅按实际训练的秒数时长计费。

工作流程如下图所示。

然后,定制化的Amazon Nova模型可通过Amazon Bedrock中的CreateCustomModel API,部署到Amazon Bedrock,并能与Amazon Bedrock知识库、Amazon Bedrock Guardrails和Amazon Bedrock Agents等原生工具无缝集成。

业务用例:实施流程详解

本文将着重探讨如何对Amazon Nova Micro模型进行适配性调整,以优化针对特定应用场景的Agent工作流中的结构化函数调用,并通过实例展示该方法如何优化Amazon Nova模型在特定领域用例的性能:

  • F1值提升81%

  • ROUGE指标最高提升42%

这些优化让模型在处理各类业务应用时效率更高,例如助力客户支持AI助手智能升级问题处理层级、为数字助手提供日程安排与工作流自动化支持,以及在电商和金融服务等领域实现决策自动化。

如下图所示,采用DPO技术,根据给定的用户查询和可用工具操作,向Amazon Nova模型展示成对的回复(其中一对回复中,一个更受人工标注员青睐,另一个则相对不受青睐),以此让模型契合人类偏好。使用nvidia/When2Call数据集对模型进行训练,以提高tool_call回复出现的可能性,这与在适当情况下自动执行后端操作的业务目标相契合。

通过大量此类示例的训练,Amazon Nova模型不仅学会生成正确的函数调用语法,还能在复杂工作流中就何时以及如何调用工具做出细致入微的决策,从而提升其在客户支持自动化、工作流编排和智能数字助手等业务应用中的实用性。

训练完成后,使用Amazon SageMaker训练任务结合相应的评估recipe对模型进行评估。评估recipe是一个YAML配置文件,用于定义如何执行Amazon Nova大语言模型(LLM)的评估任务。借助该评估recipe,既能衡量模型在特定任务上的表现,又能评估其与期望的Agent行为的一致性,从而对定制化方法进行量化评估。

下图展示了如何将这些阶段作为两个独立的训练任务步骤来实施。每个步骤都利用与Amazon CloudWatch的内置集成功能,来访问日志并监控系统指标,从而实现强大的可观测性。模型训练和评估完成后,在第3步中利用Amazon Bedrock自定义模型导入功能来部署模型。

准备条件

在运行Amazon Nova Micro模型微调笔记本之前,您需要准备以下条件:

1.需针对Amazon SageMaker AI提交以下配额提升申请。就本用例而言,您至少需要申请2个p5.48xlarge实例(配备8块NVIDIA H100 GPU),并可根据训练耗时与成本之间的权衡情况,扩展至更多p5.48xlarge实例。在“服务配额”控制台中,申请以下Amazon SageMaker AI配额:

  • 训练任务使用的P5实例(p5.48xlarge):2个

2.(可选)您可创建1个Amazon SageMaker Studio域,详细信息可参阅《Amazon SageMaker AI快速设置指南》,并使用上述角色访问Jupyter笔记本,或者也可在本地环境中使用JupyterLab。

3.创建一个Amazon IAM角色,并附加以下托管策略,以便为Amazon SageMaker AI和Amazon Bedrock提供运行示例所需的访问权限:

  • AmazonSageMakerFullAccess

  • AmazonS3FullAccess

  • AmazonBedrockFullAccess

4.为您的Amazon IAM角色分配以下策略作为信任关系。

{    "Version": "2012-10-17",    "Statement": [        {            "Sid": "",            "Effect": "Allow",            "Principal": {                "Service": [                    "bedrock.amazonaws.com",                    "sagemaker.amazonaws.com"                ]            },            "Action": "sts:AssumeRole"        }    ]}

左右滑动查看完整示意

5.克隆包含本次部署所需资源的GitHub代码库,其包含一个引用训练资源的笔记本。

git clone https://github.com/aws-samples/sagemaker-distributed-training-workshop.git
cd sagemaker-distributed-training-workshop/18_sagemaker_training_recipes/nova

左右滑动查看完整示意

接下来,运行笔记本文件nova-micro-dpo-peft.ipynb,在Amazon SageMaker训练任务中使用直接偏好优化(DPO)和参数高效微调(PEFT)技术,对Amazon Nova模型进行微调。

准备数据集

要准备数据集,您需要加载nvidia/When2Call数据集,该数据集提供了基于真实场景合成的用户查询、工具选项以及标注的偏好信息,可用于训练和评估AI助手在多步骤场景中,做出最佳工具使用决策的能力。

请按照以下步骤,将输入格式化为聊天补全格式,并在Amazon S3上为Amazon SageMaker训练任务配置数据通道。

1.加载nvidia/When2Call数据集。

from datasets import load_datasetdataset = load_dataset("nvidia/When2Call", "train_pref", split="train")

左右滑动查看完整示意

DPO技术需要一个包含以下内容的数据集:

  • 用户提示词(例如:撰写一封请求加薪的专业邮件)

  • 优选输出(理想回复)

  • 非优选输出(不合意的回复)

下图中的代码为原始数据集中的示例。

2.作为数据预处理的一部分,本例会按照以下代码所示,将数据转换为Amazon Nova Micro所需的格式。有关Amazon Nova格式的示例和具体限制,请参阅《为模型微调准备数据:了解模型》文档。

完整的数据转换代码请参阅代码库。

《为模型微调准备数据:了解模型》

https://docs.aws.amazon.com/nova/latest/userguide/fine-tune-prepare-data-understanding.html

代码库:

https://github.com/aws-samples/sagemaker-distributed-training-workshop/blob/main/18_sagemaker_training_recipes/nova/nova-micro-dpo-peft.ipynb

3.将数据集划分为训练集和测试集。

from datasets import Dataset, DatasetDictfrom random import randint
...
dataset = DatasetDict(    {"train": train_dataset, "test": test_dataset, "val": val_dataset})train_dataset = dataset["train"].map(    prepare_dataset, remove_columns=train_dataset.features)
test_dataset = dataset["test"].map(    prepare_dataset, remove_columns=test_dataset.features)

左右滑动查看完整示意

4.将训练集和测试集保存为.jsonl文件格式,这是适用于Amazon Nova的Amazon SageMaker HyperPod recipes所要求的格式,并构建这些文件将要上传至的Amazon S3路径,来为Amazon SageMaker训练任务准备好训练集和测试集。

...
train_dataset.to_json("./data/train/dataset.jsonl")test_dataset.to_json("./data/test/dataset.jsonl")

s3_client.upload_file(    "./data/train/dataset.jsonl", bucket_name, f"{input_path}/train/dataset.jsonl")s3_client.upload_file(    "./data/test/dataset.jsonl", bucket_name, f"{input_path}/test/dataset.jsonl")

左右滑动查看完整示意

使用Amazon SageMaker训练任务

进行DPO训练

要使用DPO和Amazon SageMaker训练任务配合recipes,对模型进行微调,本例采用PyTorch Estimator类别。请按照以下步骤设置微调工作负载。

1.为训练任务选择实例类型和容器镜像。

instance_type = "ml.p5.48xlarge"instance_count = 2
image_uri = (    f"708977205387.dkr.ecr.{sagemaker_session.boto_session.region_name}.amazonaws.com/nova-fine-tune-repo:SM-TJ-DPO-latest")

左右滑动查看完整示意

2.创建PyTorch Estimator,来从选定的Amazon Nova recipe中封装训练配置。

from sagemaker.pytorch import PyTorch
# define Training Job Namejob_name = "train-nova-micro-dpo"
recipe_overrides = {"training_config": {"trainer": {"max_epochs": 1},"model": {"dpo_cfg": {"beta": 0.1},"peft": {"peft_scheme": "lora","lora_tuning": {"loraplus_lr_ratio": 16.0,"alpha": 128,"adapter_dropout": 0.01,},},},},}
estimator = PyTorch(    output_path=f"s3://{bucket_name}/{job_name}",    base_job_name=job_name,    role=role,    instance_count=instance_count,    instance_type=instance_type,    training_recipe=recipe,    recipe_overrides=recipe_overrides,    max_run=18000,    sagemaker_session=sess,    image_uri=image_uri,    disable_profiler=True,    debugger_hook_config=False,)

左右滑动查看完整示意

您可通过training_recipe参数指定特定的recipe,并通过提供字典类型的recipe_overrides参数来覆盖该recipe的设置。

PyTorch Estimator类通过直接从所选recipe中封装代码和训练配置,简化了操作流程。

在此示例中,training_recipe: fine-tuning/nova/nova_micro_p5_gpu_lora_dpo使用PEFT技术定义了DPO微调配置。

3.根据提供的训练集和测试集的Amazon S3存储桶路径,创建TrainingInput对象,为PyTorch Estimator设置输入通道。

from sagemaker.inputs import TrainingInput
train_input = TrainingInput(    s3_data=train_dataset_s3_path,    distribution="FullyReplicated",    s3_data_type="Converse",)test_input = TrainingInput(    s3_data=test_dataset_s3_path,    distribution="FullyReplicated",    s3_data_type="Converse",)

左右滑动查看完整示意

4.在已创建的Estimator上,调用fit函数来提交训练任务。

estimator.fit(inputs={"train": train_input, "validation": test_input}, wait=True)

左右滑动查看完整示意

您可直接从笔记本的输出中监控任务进度,也可参考Amazon SageMaker AI控制台,该控制台会显示任务状态以及相应的Amazon CloudWatch日志,以供管理和监控使用,如下图所示。

Amazon SageMaker训练任务控制台

Amazon SageMaker训练任务系统指标

任务完成后,训练好的模型权重将保存在一个受托管的Amazon S3存储桶中,该安全存储桶由亚马逊云科技控制,并采用特殊的访问控制机制。

作为训练流程的一部分,您可访问保存在客户Amazon S3存储桶中清单文件里所共享的路径。

使用评估recipe评估微调模型

要对照基准或自定义数据集评估模型性能,可以利用Amazon Nova评估recipes和Amazon SageMaker训练任务来执行评估流程,只需指向在上一步中训练好的模型即可。

在多个支持的基准测试(如mmlu、math、gen_qa和llm_judge)中,将为gen_qa和llm_judge任务提供两种方案,这些方案能够评估响应的准确性、精确度以及模型推理质量,同时还可使用您自有的数据集,并将结果与Amazon Bedrock上的基础模型进行对比。

方案A:评估gen_qa任务

1.使用以下代码来准备数据集,该数据集需按照评估recipe要求的以下格式,进行结构化处理。

{    "system": "(Optional) String containing the system prompt that sets the behavior, role, or personality of the model",    "query": "String containing the input prompt",    "response": "String containing the expected model output"

左右滑动查看完整示意

2.将数据集保存为Amazon Nova评估recipes所要求的.jsonl格式的文件,并将其上传至指定的Amazon S3路径。

# Save datasets to s3val_dataset.to_json("./data/val/gen_qa.jsonl")
s3_client.upload_file(    "./data/val/gen_qa.jsonl", bucket_name, f"{input_path}/val/gen_qa.jsonl")...

左右滑动查看完整示意

3.创建一个评估recipe,指向已训练的模型、验证数据以及适用于您实际用例的评估指标。

model_path = "<ESCROW_S3_PATH_MODEL_CHECKPOINTS>"
recipe_content = f"""run:  name: nova-micro-gen_qa-eval-job  model_type: amazon.nova-micro-v1:0:128k  model_name_or_path: {model_path}  replicas: 1  data_s3_path: {val_dataset_s3_path} # Required, input data s3 location
evaluation:  task: gen_qa  strategy: gen_qa  metric: all    inference:  max_new_tokens: 4096  top_p: 0.9  temperature: 0.1"""
with open("eval-recipe.yaml", "w") as f:  f.write(recipe_content)

左右滑动查看完整示意

4.选择评估任务所需的实例类型、容器镜像,并定义模型将存储的检查点路径。针对Amazon Nova评估recipes,推荐的实例类型如下:

  • Amazon Nova Micro和Amazon Nova Lite选用ml.g5.12xlarge

  • Amazon Nova Pro选用ml.g5.48xlarge

instance_type = "ml.g5.12xlarge"instance_count = 1
image_uri = (    f"708977205387.dkr.ecr.{sagemaker_session.boto_session.region_name}.amazonaws.com/nova-evaluation-repo:SM-TJ-Eval-latest")

左右滑动查看完整示意

5.创建PyTorch Estimator,以封装从所创建的评估recipe中获得的评估设置。

from sagemaker.pytorch import PyTorch
# define Training Job Namejob_name = "train-nova-micro-eval"
estimator = PyTorch(    output_path=f"s3://{bucket_name}/{job_name}",    base_job_name=job_name,    role=role,    instance_count=instance_count,    instance_type=instance_type,    training_recipe="./eval-recipe.yaml",    max_run=18000,    sagemaker_session=sagemaker_session,    image_uri=image_uri,    disable_profiler=True,    debugger_hook_config=False,)

左右滑动查看完整示意

6.根据提供的验证数据集的Amazon S3存储桶路径,创建TrainingInput对象,从而为PyTorch Estimator设置输入通道。

from sagemaker.inputs import TrainingInput
eval_input = TrainingInput(    s3_data=val_dataset_s3_path,    distribution="FullyReplicated",    s3_data_type="S3Prefix",)

左右滑动查看完整示意

7.提交训练任务。

estimator.fit(inputs={"train": eval_input}, wait=False)

左右滑动查看完整示意

评估指标将由Amazon SageMaker训练任务存储在您指定的Amazon S3存储桶中,其位于output_path路径下。

下图表展示了针对gen_qa任务的基础模型评估结果。

方案B:评估llm_judge任务

1.针对llm_judge任务,需按以下格式构建数据集,其中response_A代表真实答案,response_B代表自定义的模型输出结果。

{    "prompt": "String containing the input prompt and instructions",    "response_A": "String containing the ground truth output",    "response_B": "String containing the customized model output"}

左右滑动查看完整示意

2.按照为gen_qa任务所描述的相同方法,通过将评估策略指定为judge,专门为llm_judge任务创建一个评估recipe。

recipe_content = f"""run:name: nova-micro-llm-judge-eval-job  model_type: amazon.nova-micro-v1:0:128k  model_name_or_path: "nova-micro/prod"...evaluation:task: llm_judge  strategy: judge  metric: all
..."""

左右滑动查看完整示意

数据集准备、评估recipe创建以及作业提交步骤等完整实现过程,请参阅笔记本文件nova-micro-dpo-peft.ipynb。

llm_judge任务的评估结果如下图所示。

nova-micro-dpo-peft.ipynb:

https://github.com/aws-samples/sagemaker-distributed-training-workshop/blob/main/18_sagemaker_training_recipes/nova/nova-micro-dpo-peft.ipynb

该图表展示了当LLM作为评判者时,评估两种不同情况下的模型性能所得到的偏好百分比。

在图1中,微调后的模型以66%的偏好率优于真实答案(占比34%);而在图2中,基础模型以56%的偏好率优于真实答案(占比44%)。

总结评估结果

微调模型在工具调用任务上取得了显著提升,在所有关键评估指标上均优于基础模型。特别是F1分数提高了81%,F1 Quasi分数提升了35%,这反映出模型在精确率和召回率方面均实现了大幅提升。

在词汇重叠方面,该模型在将生成的答案与参考文本(包括需调用的工具及调用函数的结构)进行匹配时,展现出更高的准确性,ROUGE-1和ROUGE-2分数分别提高了39%42%。此外,llm_judge评估进一步验证了这些改进,微调模型的输出结果在与真实答案的对比中获得了66.2%的偏好率

这些在多个评估框架下取得的成果,证实了本演示的微调方法在提升模型实际应用性能方面的有效性。

在Amazon Bedrock上部署模型

要部署微调后的模型,可以使用Amazon Bedrock的CreateCustomModel API,并利用Amazon Bedrock按需推理功能及原生模型调用工具。要完成模型部署,请按以下步骤操作。

1.通过指向存储在托管Amazon S3存储桶中的模型检查点,来创建自定义模型。

...model_path = "<ESCROW_S3_PATH_MODEL_CHECKPOINTS>"# Define name for imported modelimported_model_name = "nova-micro-sagemaker-dpo-peft"
request_params = {    "modelName": imported_model_name,    "modelSourceConfig": {"s3DataSource": {"s3Uri": model_path}},    "roleArn": role,    "clientRequestToken": "NovaRecipeSageMaker",}# Create the model importresponse = bedrock.create_custom_model(**request_params)

左右滑动查看完整示意

2.监控模型状态,等待模型状态变为ACTIVE或FAILED。

from IPython.display import clear_outputimport time
while True:    response = bedrock.list_custom_models(sortBy='CreationTime',sortOrder='Descending')    model_summaries = response["modelSummaries"]    status = ""    for model in model_summaries:        if model["modelName"] == imported_model_name:            status = model["modelStatus"].upper()            model_arn = model["modelArn"]            print(f'{model["modelStatus"].upper()} {model["modelArn"]} ...')            if status in ["ACTIVE", "FAILED"]:                break    if status in ["ACTIVE", "FAILED"]:        break    clear_output(wait=True)    time.sleep(10)

左右滑动查看完整示意

模型导入完成后,您将可通过Amazon Web Services CLI查看该模型。

aws bedrock list-custom-models{    "modelSummaries": [        {            "modelArn": "arn:aws:bedrock:us-east-1: 123456789101:custom-model/imported/abcd1234efgh",            "modelName": "nova-micro-sagemaker-dpo-peft",            "creationTime": "2025-07-16T12:52:39.348Z",            "baseModelArn": "arn:aws:bedrock:us-east-1::foundation-model/amazon.nova-micro-v1:0:128k",            "baseModelName": "",            "customizationType": "IMPORTED",            "ownerAccountId": "123456789101",            "modelStatus": "Active"        }    ]}

左右滑动查看完整示意

3.配置Amazon Bedrock自定义模型的按需推理服务。

request_params = {    "clientRequestToken": "NovaRecipeSageMakerODI",    "modelDeploymentName": f"{imported_model_name}-odi",    "modelArn": model_arn,}
response = bedrock.create_custom_model_deployment(**request_params)

左右滑动查看完整示意

4.监控模型部署状态,等待模型状态变为ACTIVE或FAILED。

from IPython.display import clear_outputimport time
while True:    response = bedrock.list_custom_model_deployments(        sortBy="CreationTime", sortOrder="Descending"    )    model_summaries = response["modelDeploymentSummaries"]    status = ""    for model in model_summaries:        if model["customModelDeploymentName"] == f"{imported_model_name}-odi":            status = model["status"].upper()            custom_model_arn = model["customModelDeploymentArn"]            print(f'{model["status"].upper()} {model["customModelDeploymentArn"]} ...')            if status in ["CREATING"]:                break    if status in ["ACTIVE", "FAILED"]:        break    clear_output(wait=True)    time.sleep(10)

左右滑动查看完整示意

5.通过Amazon Web Services SDK运行模型推理。

tools = [    {        "toolSpec": {            "name": "fetch_weather",            "description": 'Fetch weather information',            "inputSchema": {                "json": {                    "type": "object",                    "properties": {                        "type": "object",                        "properties": {                            "query": {                                "type": "string",                                "description": "Property query",                            },                            "num_results": {                                "type": "integer",                                "description": "Property num_results",                            },                        },                        "required": ["query"],                    },                },            },        }    }    ...]
system_prompt = f"""You are a helpful AI assistant that can answer questions and provide information.You can use tools to help you with your tasks.
You have access to the following tools:
<tools>{{tools}}</tools>For each function call, return a json object with function name and parameters:
{{{{\"name\": \"function name\", \"parameters\": \"dictionary of argument name and its value\"}}}}"""
system_prompt = system_prompt.format(tools=json.dumps({'tools': tools}))
messages = [{"role": "user", "content": [{"text": "What is the weather in New York?"}]},]

左右滑动查看完整示意

6.通过调用Converse API提交推理请求。

response = client.converse(    modelId=model_arn,    messages=messages,     system=["text": system_prompt],    inferenceConfig={        "temperature": temperature,         "maxTokens": max_tokens,         "topP": top_p   },)
response["output"]

左右滑动查看完整示意

得到以下输出响应。

{   "message":{      "role":"assistant",      "content":[         {            "text":"{\"name\": \"fetch_weather\", \"parameters\": {\"query\": \"Rome, Italy\"}}"         }      ]   }}

左右滑动查看完整示意

资源清理

为避免产生更多费用,请按照以下步骤操作清理资源。

1.删除未使用的Amazon SageMaker Studio资源。

2.(可选)删除Amazon SageMaker Studio域。

3.在Amazon SageMaker控制台中,选择导航窗格中的“训练”选项,确认训练任务已不再运行。

4.使用Amazon Web Services CLI或Amazon Web Services SDK,删除Amazon Bedrock中的自定义模型部署。

总结

本文展示了如何使用直接偏好优化(DPO)技术,在Amazon SageMaker训练任务中对Amazon Nova理解模型进行定制化处理。本演示重点聚焦于优化工具调用能力,结果显示,经过微调的模型性能显著提升,与基于约8000条记录训练数据集的基础模型相比,其F1分数最高提升了81%。

全托管式的Amazon SageMaker训练任务及优化方案简化了定制化流程,使各组织都能够根据自身特定领域的应用场景需求,对Amazon Nova模型进行适配调整,这标志着亚马逊云科技在推动先进AI定制化技术普及并应用于各行各业方面,向前迈出了重要一步。

要开始使用专为Amazon Nova设计的recipes,您可参阅Amazon SageMaker HyperPod recipes库、Amazon SageMaker Distributed Training workshop相关资源,以及Amazon Nova示例代码库,其中提供了示例实现代码。

亚马逊云科技将根据客户反馈,并紧跟机器学习前沿趋势,持续拓展recipe体系,为您提供成功训练AI模型所需的工具。

Amazon SageMaker HyperPod recipes库:

https://github.com/aws/sagemaker-hyperpod-recipes

Amazon SageMaker Distributed Training workshop:

https://github.com/aws-samples/sagemaker-distributed-training-workshop/tree/main/18_sagemaker_training_recipes/nova

Amazon Nova示例库:

https://github.com/aws-samples/amazon-nova-samples/tree/main/customization

本篇作者

Mukund Birje

亚马逊云科技人工智能与机器学习团队的高级产品营销经理。他专注于推动Amazon Nova基础模型的广泛应用。他在市场营销与品牌建设领域拥有10多年经验,涉足过多个不同行业。

Karan Bhandarkar

Amazon Nova团队首席产品经理。他专注于助力客户利用专有数据对基础模型进行定制化处理,从而更好满足特定业务领域和行业需求。他热衷于推动生成式AI技术的发展及其在各行业发挥实际作用。

Kanwaljit Khurmi

亚马逊云科技全球首席生成式AI解决方案架构师。他与亚马逊云科技产品团队、工程部门及客户紧密合作,提供指导和技术支持,助力他们提升在亚马逊云科技上部署的混合机器学习解决方案的价值。他擅长为客户提供容器化应用及高性能计算解决方案。

Bruno Pistone

亚马逊云科技全球高级生成式AI与机器学习专家解决方案架构师。他与亚马逊云科技产品团队及大型客户合作,助力他们全面了解自身技术需求,并设计能够充分利用亚马逊云科技云服务和亚马逊机器学习技术栈的人工智能与机器学习解决方案。他专注于模型定制化、生成式AI以及端到端机器学习领域。

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

听说,点完下面4个按钮

就不会碰到bug了!

点击阅读原文查看博客!获得更详细内容!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值