【生产级 Agentic AI 解决方案】Dify 示例:数据库执行Agent


🚀 目标:在 Dify 中创建一个 Agent,实现输入自然语言后,能够执行 SQL 并给出反馈结果。

⭐ 原理:工具调用,利用工具调用,查询数据库表结构定义,并根据自然语言找到对应的表名、列名,然后再拼接形成 SQL,最后调用工具执行 SQL 并给出用户反馈信息。

😄 数据库 Agent DSL:数据库Agent.yml

准备工作

安装“通义千问”插件

插件地址:

插件功能:阿里云众多大模型的接入

### Agentic AI Agent Planning, Reflection, and Self-Correction Agentic artificial intelligence (AI) agents possess the capability to plan actions towards achieving goals while reflecting on past performance and correcting mistakes. These abilities are fundamental components that enable agentic systems to operate autonomously with a high degree of efficiency. #### Planning Capabilities Planning involves setting objectives and determining sequences of actions required to achieve these goals. Advanced planning algorithms allow agentic AI agents to consider multiple scenarios simultaneously by evaluating potential outcomes before committing resources or executing tasks[^1]. This process often includes: - **Goal Setting**: Defining clear targets based on internal states or external inputs. - **Action Sequencing**: Determining optimal orderings of operations necessary for goal attainment. - **Resource Management**: Allocating available assets efficiently across planned activities. ```python def generate_plan(agent_state, environment_model): """ Generates an action sequence from current state to reach desired objective Parameters: agent_state (dict): Current condition of the agent including location, inventory etc. environment_model (object): Model representing world dynamics Returns: list: Ordered set of actions leading toward target achievement """ # Define goal here... goal = define_goal(environment_model) possible_actions = get_possible_actions(agent_state, environment_model) best_sequence = find_best_action_sequence(possible_actions, goal) return best_sequence ``` #### Reflective Mechanisms Reflection enables agentic entities to analyze previous experiences critically. Through this analysis, insights can be gained regarding what worked well versus areas needing improvement. Techniques such as reinforcement learning facilitate continuous adaptation through trial-and-error processes where rewards/penalties guide future decision-making strategies[^2]. #### Self-Correction Protocols Self-correction refers to mechanisms allowing intelligent agents to identify errors during execution phases promptly. Once detected, corrective measures are initiated automatically without human intervention. Common approaches include anomaly detection models trained specifically for recognizing deviations from expected behavior patterns within specific contexts[^3]. --related questions-- 1. How do modern AI frameworks support dynamic replanning when initial plans fail? 2. What role does machine learning play in enhancing reflective practices among autonomous agents? 3. Can you provide examples demonstrating effective implementations of self-correcting features in real-world applications?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甘蓝聊Java

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值