tf2.0初始化集中方式

本文介绍了TensorFlow 2.0中常用的权重初始化方法,包括常数、全1、全0、均匀分布、正态分布、截断正态分布、单位方差初始化、自适应初始化、正交初始化等,并提到了Keras中的Glorot、He和LeCun正态及均匀分布初始化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.constant_initializer() 常数初始化
2. tf.ones_initializer() 全1初始化
3. tf.zeros_initializer() 全0初始化
4. tf.random_uniform_initializer() 均匀分布初始化
5. tf.random_normal_initializer() 正态分布初始化
6. tf.truncated_normal_initializer() 截断正态分布初始化
7. tf.uniform_unit_scaling_initializer() 这种方法输入方差是常数
8. tf.variance_scaling_initializer() 自适应初始化
9. tf.orthogonal_initializer() 生成正交矩阵

正态化的Glorot初始化——glorot_normal
tf.keras.initializers.glorot_normal(seed=None)
标准化的Glorot初始化——glorot_uniform
keras.initializers.glorot_uniform(seed=None)
正态化的he初始化——he_normal
keras.initializers.he_normal(seed=None)
标准化化的he初始化——he_uniform
keras.initializers.he_uniform(seed=None)
正态化的lecun初始化——lecun_normal
keras.initializers.lecun_normal(seed=None)
标准化的lecun初始化——lecun_uniform
keras.initializers.lecun_uniform(seed=None)
截断正态分布 – truncated_normal
keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)
标准正态分布——random_normal

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值