LLM - 详解和对比 ResNet 和 DenseNet 和 MobileNet

本文详细对比了ResNet50、DenseNet121和MobileNet系列(v1、v2、v3)的网络结构与特点。ResNet利用残差学习解决深层网络的梯度消失问题;DenseNet通过密集连接提高特征传递效率;MobileNet则采用Depthwise Separable卷积实现轻量化,v2引入Linear Bottleneck和Inverted Residuals,v3则利用NAS和h-swish/sigmoid优化网络结构,提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经典的Backbone,如ResNet50、DenseNet121、MobileNetV2,三类框架,参考 Keras Applications

ResNet50 DenseNet121 MobileNetV2
时间 CVPR 2015 CVPR 2017 CVPR 2018
模型 98M 33M 14M
Top1(ImageNet) 0.749 0.750 0.713
参数 25,636,712(约2500w) 8,062,504(约800w) 3,538,984(约350w)
推理速度CPU 58.20ms 77.14ms 25.90ms
推理速度GPU
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值