编程挑战-高斯公式

这篇博客探讨了高斯的等差数列求和公式,并提出一个编程挑战:给定正整数n,计算它可以表示为多少种连续正整数之和。输入和输出格式被详细描述,例如输入5和120,对应的输出分别是2和4,分别表示5可以有两种和120可以有四种不同的连续正整数之和方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高斯在上小学时发明了等差数列求和公式:1+2+..+100=5050。现在问题在于给你一个正整数n,问你他可以表示为多少种连续正整数之和?(自身也算)。

输入格式:

多组数据,每组数据一行,一个正整数n。 0<n<2000000000

输出格式:

每组数据一行,包含一个正整数,表示结果。



答题说明:

输入样例

5

120

输出样例:

2

4

解释:

5=2+3=5

120=1+2+...+15=22+23+24+25+26=39+40+41=120




#include <iostream>
#include <vector>
using namespace std;
int main()
{
	vector<int> ans;
	vector<long> hel;;
	int n;
	long t;
	while (cin >> t)
		hel.push_back(t);
	for (size_t k = 0; k < hel.size(); k++)//最外层,对每一个vector,即录入元素处理。
	{
		n = hel[k];// 读出数据。
		int count = 0, i = 1;
		while (i <=n)//从1开始,下一次是从2开始,……
		{
			int sum = 0;
			for (int t = i; t <= n; t++)//从1开始加,加到n每加一个就判断一下和是否等于n
			{
				sum += t;
				if (sum == n)
				{
					count++;
					break;
				}
				if (sum + t>n)
					break;
			}
			i++;
		}
		ans.push_back(count);
	}
	for (vector<int>::iterator iter = ans.begin(); iter != ans.end(); iter++)
		cout << *iter << endl;
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值