高斯在上小学时发明了等差数列求和公式:1+2+..+100=5050。现在问题在于给你一个正整数n,问你他可以表示为多少种连续正整数之和?(自身也算)。
输入格式:
多组数据,每组数据一行,一个正整数n。 0<n<2000000000
输出格式:
每组数据一行,包含一个正整数,表示结果。
答题说明:
输入样例
5
120
输出样例:
2
4
解释:
5=2+3=5
120=1+2+...+15=22+23+24+25+26=39+40+41=120
#include <iostream>
#include <vector>
using namespace std;
int main()
{
vector<int> ans;
vector<long> hel;;
int n;
long t;
while (cin >> t)
hel.push_back(t);
for (size_t k = 0; k < hel.size(); k++)//最外层,对每一个vector,即录入元素处理。
{
n = hel[k];// 读出数据。
int count = 0, i = 1;
while (i <=n)//从1开始,下一次是从2开始,……
{
int sum = 0;
for (int t = i; t <= n; t++)//从1开始加,加到n每加一个就判断一下和是否等于n
{
sum += t;
if (sum == n)
{
count++;
break;
}
if (sum + t>n)
break;
}
i++;
}
ans.push_back(count);
}
for (vector<int>::iterator iter = ans.begin(); iter != ans.end(); iter++)
cout << *iter << endl;
return 0;
}