集成向量数据库:与 Chroma 和 Milvus 配合使用
向量数据库(如 Chroma 和 Milvus)在大规模向量存储和相似度搜索中起到了至关重要的作用。在集成 Spring AI 时,可以将这些向量数据库与 AI 模型结合,以支持文本、图像或其他数据的高效相似度匹配与检索。本文将介绍如何将 Chroma 和 Milvus 向量数据库集成到 Spring AI 项目中,使用它们来进行向量存储和相似度搜索。
1. 向量数据库的作用与原理
向量数据库通常用于存储和检索高维数据的向量表示,特别适合处理 AI 模型的输出(例如,文本的嵌入向量)。它们通过 向量检索 技术(如余弦相似度、欧几里得距离等)支持高效的相似度搜索。
- Chroma:一个开源的向量数据库,支持高效的向量存储与相似度搜索,具有简洁的 API 和灵活的向量存储方式。
- Milvus:一个广泛使用的向量数据库,专为大规模向量存储和检索优化,支持各种 AI 模型的输出,如图像、文本和音频嵌入。
2. 集成 Chroma 向量数据库
(1) 配置 Chroma
Chroma 可以通过其官方 Java SDK 或 REST API 与 Java 应用集成。假设我们通过 REST API 方式进行集成,首先需要配置 Chroma 向量数据库。
-
启动 Chroma 数据库
- 参考 Chroma 官方文档 进行本地或 Docker 环境的安装与启动。
-
配置连接 Chroma
使用 Spring Boot 的RestTemplate
或WebClient
来发送 HTTP 请求与 Chroma 数据库进行交互。
(2) 示例:向 Chroma 插入向量
假设我们有一个文本嵌入模型,它将文本转为 512 维的向量,下面展示如何将文本向量存储到 Chroma 中。
首先,定义一个服务类,用于与 Chroma 交互。
package com.example.springaidemo.service;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import org.springframework.web.reactive.function.client.WebClient;
@Service
public class ChromaService {
@Value("${chroma.url}")
private String chromaUrl;
private final WebClient webClient;
public ChromaService(WebClient.Builder webClientBuilder) {
this.webClient = webClientBuilder.baseUrl(chromaUrl).build();
}
public void insertVector(String id, double[] vector) {
// 将向量存入 Chroma
webClient.post()
.uri("/vectors")
.bodyValue(new VectorInsertRequest(id, vector))
.retrieve()
.bodyToMono(Void.class)
.block();
}
// 查询与输入向量最相似的向量
public String searchVector(double[] queryVector) {
return webClient.post()
.uri("/search")