还在使用关键词搜索?SpringAI 实现语义搜索

集成向量数据库:与 Chroma 和 Milvus 配合使用

向量数据库(如 ChromaMilvus)在大规模向量存储和相似度搜索中起到了至关重要的作用。在集成 Spring AI 时,可以将这些向量数据库与 AI 模型结合,以支持文本、图像或其他数据的高效相似度匹配与检索。本文将介绍如何将 ChromaMilvus 向量数据库集成到 Spring AI 项目中,使用它们来进行向量存储和相似度搜索。

1. 向量数据库的作用与原理

向量数据库通常用于存储和检索高维数据的向量表示,特别适合处理 AI 模型的输出(例如,文本的嵌入向量)。它们通过 向量检索 技术(如余弦相似度、欧几里得距离等)支持高效的相似度搜索。

  • Chroma:一个开源的向量数据库,支持高效的向量存储与相似度搜索,具有简洁的 API 和灵活的向量存储方式。
  • Milvus:一个广泛使用的向量数据库,专为大规模向量存储和检索优化,支持各种 AI 模型的输出,如图像、文本和音频嵌入。

2. 集成 Chroma 向量数据库

(1) 配置 Chroma

Chroma 可以通过其官方 Java SDK 或 REST API 与 Java 应用集成。假设我们通过 REST API 方式进行集成,首先需要配置 Chroma 向量数据库。

  1. 启动 Chroma 数据库

  2. 配置连接 Chroma
    使用 Spring Boot 的 RestTemplateWebClient 来发送 HTTP 请求与 Chroma 数据库进行交互。

(2) 示例:向 Chroma 插入向量

假设我们有一个文本嵌入模型,它将文本转为 512 维的向量,下面展示如何将文本向量存储到 Chroma 中。

首先,定义一个服务类,用于与 Chroma 交互。

package com.example.springaidemo.service;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import org.springframework.web.reactive.function.client.WebClient;

@Service
public class ChromaService {
   
   

    @Value("${chroma.url}")
    private String chromaUrl;

    private final WebClient webClient;

    public ChromaService(WebClient.Builder webClientBuilder) {
   
   
        this.webClient = webClientBuilder.baseUrl(chromaUrl).build();
    }

    public void insertVector(String id, double[] vector) {
   
   
        // 将向量存入 Chroma
        webClient.post()
                .uri("/vectors")
                .bodyValue(new VectorInsertRequest(id, vector))
                .retrieve()
                .bodyToMono(Void.class)
                .block();
    }

    // 查询与输入向量最相似的向量
    public String searchVector(double[] queryVector) {
   
   
        return webClient.post()
                .uri("/search")
                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值