
SLAM学习
文章平均质量分 55
chengwei0019
学无先后,达者为师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
李群李代数,扰动求导个人总结
李群李代数及扰动求导个人总结原创 2022-06-10 10:51:53 · 396 阅读 · 1 评论 -
UWB和lidar坐标系下轨迹对齐[附源码]
UWB和lidar坐标系下轨迹对齐,利用SVD求解,对齐两组轨迹,ICP基础知识。原创 2022-05-17 14:18:17 · 905 阅读 · 0 评论 -
3D环境中的自适应粒子滤波[ amcl-3d]
先占坑,有空填。原创 2021-09-01 09:21:11 · 1677 阅读 · 4 评论 -
realsense435i运行vins-mono,标定部分
相机标定1.安装kalibr;参考:https://blog.csdn.net/wangbaodong070411209/article/details/112248834https://blog.csdn.net/weixin_40628128/article/details/959459452.生成棋盘格生成棋盘格:rosrun kalibr kalibr_create_target_pdf --type checkerboard --nx 8 --ny 11 --csx 0.0原创 2021-08-27 14:40:05 · 774 阅读 · 0 评论 -
RealSense435i,运行VINS-mono
准备工作:安装realsense SDK2.0:参考官方教程安装realsense ros warp:参考官方教程安装vins-mono:参考官方教程测试vins-mono:下载数据集:https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets打开终端,分别输入如下指令:roslaunch vins_estimator euroc.launch roslaunch vins_esti原创 2021-08-27 14:20:52 · 571 阅读 · 2 评论 -
Lidar与imu外参标定
目录网上资料方案1方案2Lidar与IMU的相对旋转实现最近由于工作需要,花了几天时间了解激光与imu的标定方法;因为项目需要,且这里是个人认识的一个整理,所以并不会很深入很细致的进行公式或原理推导。由于个人水平有限,所以可能会存在一些认知的错误,可以留言交流学习一下。网上资料方案1首推浙大开源的Lidar_IMU_calib,标定精度很高。从粗到细的,实现高精度的lidar-imu标定,具体可以看一下论文和代码哈!我这里也测试了一下,由于一些原因,一直没有标定.原创 2021-05-19 14:05:32 · 14057 阅读 · 24 评论 -
PCA算法的原理以及c++实现
PCA主成分分析,是模式识别中常见的特征降维的算法,其大体步骤可以分为以下几个部分:(1)原始特征矩阵归一化处理(假设M和样本,每个样本n个特征,则对M*N的X数据,进行零均值化,即减去这一列的均值)(2)求取归一化处理后特征矩阵的协方差矩阵(3)计算协方差矩阵的特征值及其对应的特征向量(4)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P;(5)Y=PX即...原创 2020-03-12 16:53:27 · 3067 阅读 · 1 评论 -
orb-slam资料汇总
ORB 一种特征匹配替代方法:对比SIFT或SURF 链接ORB-SLAM:精确多功能单目SLAM系统 链接ORB-SLAM2源代码分析 链接Ubuntu 14.04 Linux 运行 ORB-SLAM2 链接基于关键帧原创 2016-10-19 10:58:44 · 1890 阅读 · 0 评论 -
g2o的安装及初步使用
声明:本博客仅供个人学习使用。转载自 Jasmine_shineg2o的安装及初步使用 运行环境:ubuntu12.04 + g2o 个人原创,转载请注明来自Jasmine_shine的专栏:一、g2o的安装 1、安装依赖项: sudo apt-get install libeigen3-dev libsuitesparse-dev l转载 2016-08-04 20:36:12 · 4863 阅读 · 0 评论 -
ICCV研讨会:实时SLAM的未来以及深度学习与SLAM的比较
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。这篇短文写的很好,我把它copy到这里供大家学习上一届「国际计算机视觉大会(ICCV:International Conference of Computer Vision )」成为了深度学习(Deep Learning)技术的主场,但在我们宣布卷积神经网络(ConvNet)的全面转载 2016-07-20 09:32:05 · 7955 阅读 · 2 评论 -
orblsam2-理论基础(三)
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。看到orbslam2初始化里的Initializer::ReconstructH和Initializer::ReconstructF两个子函数里用到了opencv::SVD分解。这里我将会详细讲解SVD的分解理论!奇异值分解(Singular Value Dec转载 2016-07-20 09:30:07 · 1003 阅读 · 0 评论 -
orbslam2(1)-初始化
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。单目SLAM地图初始化的目标是构建初始的三维点云。由于不能仅仅从单帧得到深度信息,因此需要从图像序列中选取两帧以上的图像,估计摄像机姿态并重建出初始的三维点云。ORB-SLAM中提到,地图初始化常见的方法有三种。方法一追踪一个已知物体。单帧图像的每一个点都对应于空间的一转载 2016-07-20 09:12:14 · 2717 阅读 · 1 评论 -
orbslam2(2)-追踪
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。最近在读ORB-SLAM的代码,虽然代码注释算比较多了,但各种类和变量互相引用,看起来有点痛苦。索性总结了一下Tracking部分的代码结构,希望能抓住主要思路,不掉坑里。可以看出,追踪部分的主要思路是在当前帧和(局部)地图之间寻找尽可能多的对应关系,持续优化位姿和地图。转载 2016-07-20 09:15:43 · 1362 阅读 · 0 评论 -
orbslam2(3)-优化
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。ORB-SLAM作为单目SLAM,其精度很大程度上决定于帧与帧之间的位姿优化的是否准确。因此优化(optimization)在ORB-SLAM里面扮演了很重要的角色。这一小节探讨一下ORB-SLAM里用到的优化。ORB-SLAM选用g2o作为图优化的方法,关于g2o可以参考ht转载 2016-07-20 09:17:23 · 2574 阅读 · 0 评论 -
orbslam2-导航(1)-原理
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。从今天开始博主我就把我用orbslam2导航的原理和code讲给大家。首先,orbslam2构建的map是稀疏地图,有人说稀疏地图怎么导航,不是只有稠密map,至少是半稠密map才能navigation吗?是的,要想navigation必须要有一个好的地图例如:2D栅阁转载 2016-07-20 09:19:06 · 3633 阅读 · 0 评论 -
使用自己笔记本摄像头运行orbslam2
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。首先你已经装了ros indigo (1)配置环境变量下面我们开始创建一个catkin 工作空间:(在主文件夹下)$ mkdir -p ~/catkin_ws/src$ cd ~/catkin_ws/src即使这个工作空间是空的(在'src'目录中没有任何软件包,只转载 2016-07-20 09:20:51 · 4654 阅读 · 1 评论 -
orbslam作者的ppt
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。 Should we still do sparse-feature based SLAM?1) Monocular ORB-SLAM(Mur-Artal, Montiel, Tardos T-RO 2015)2) M转载 2016-07-20 09:22:34 · 2725 阅读 · 0 评论 -
orbslam2的基础理论(一)
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。本篇博客借鉴了许多经典博客的理论。orbslam2相机pose估计和map point结构恢复orbslam2的相机初始估计有两种方法:本证矩阵E和单应矩阵两种方法,具体可以看我之前的博客oerslam2-初始化(1)再讲相机pose估计之前,我要讲一下转载 2016-07-20 09:25:02 · 3736 阅读 · 0 评论 -
orbslam2-基础理论(二)
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,敬请告知。这篇将要讲orbslam2相机初始位置估计的另一种方法:单应矩阵H(使用场景:平面,视差小)和map point的求法(一):单应矩阵在计算机视觉中,平面的单应性被定义为一个平面到另外一个平面的投影映射。因此一个二维平面上的点映射到摄像机成像仪上的映转载 2016-07-20 09:28:28 · 1093 阅读 · 1 评论 -
视觉slam学习资料
转载声明:本文转载自 金木炎 的博客,仅供个人学习。感谢博主的无私分享,如有侵权,你告知。一直想写博客,一来是实验室太忙,二来是自己初入视觉slam,怕误人子弟。所以一直没写,但是实验室的同学说我可以介绍一些基础给那些刚入门的人参考。那么从今天开始我就开始陆陆续续的把我所了解的visual slam写给大家。希望一些大牛能指正!这篇博客就把我自己整理的资料贴出来,供大家转载 2016-07-20 09:07:44 · 1973 阅读 · 2 评论