感觉这一学期学了挺多各种各样的机器学习方法,好多不经常用都快忘了。把各种方法我觉得讲得比较好的资料记录下来,永久更新。。。
后文提到的主要资料书籍汇总:
Ng CS229:斯坦福Andrew Ng 机器学习课程,网易公开课和coursera 上都有视频;
UFLDL教程:Andrew Ng 深度学习教程:http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B
《独立成分分析》:作者:AapoHyvarinen周宗潭译
《模式识别 张学工 第三版》
《模式分类 Duda 第二版》
《机器学习实战》
《统计学习方法 李航 2012年》
《The Elements of Statistical Learning:Data Mining, Inference, and Prediction》2009年第二版,作者:Trevor Hastie,Robert Tibshirani,Jerome Friedman
(这本英文可以好好啃啃)