机器学习与数据挖掘、计算机视觉方法资料汇总(永久更新)

这篇博客汇总了机器学习和数据挖掘的各种方法,包括PCA、LDA、神经网络降维、KNN、贝叶斯分类、SVM等,并提供了相关资料链接,如Ng的CS229课程、《统计学习方法》等,适合学习和复习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感觉这一学期学了挺多各种各样的机器学习方法,好多不经常用都快忘了。把各种方法我觉得讲得比较好的资料记录下来,永久更新。。。

后文提到的主要资料书籍汇总:

Ng CS229:斯坦福Andrew Ng 机器学习课程,网易公开课和coursera 上都有视频;

UFLDL教程:Andrew Ng 深度学习教程:http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B

《独立成分分析》:作者:AapoHyvarinen周宗潭译

《模式识别 张学工 第三版》

《模式分类 Duda 第二版》

《机器学习实战》

《统计学习方法  李航  2012年》

《The Elements of Statistical Learning:Data Mining, Inference, and Prediction》2009年第二版,作者:Trevor Hastie,Robert Tibshirani,Jerome Friedman

(这本英文可以好好啃啃)

 

数据分析与降维方法:

PCA(主成分分析)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值