排队论基础
参考《运筹学教程》-胡运权
排队论是对排队问题的研究,表示为随机聚散服务系统。聚即为到达,散即为离去,随机指的是顾客的到达情况与每个顾客接受服务的时间是随机的。
一般来说,顾客的相继到达时间与服务时间这两个量至少有一个量是未知的。因此,排队论一般被称为随机服务系统理论。
以下仅介绍基本概念
输入过程
说明顾客如何到达系统:
- 总数:有限/无限
- 到达方式:单个/成批
- 相继到达时间的分布:设Tn为第n个顾客的到达时间,先假设n个顾客相继到达,即
T_1<T_2<...<T_n
,设X_n=T_n-T_{n-1}
,则假定Xn是独立同分布的。
分布有:
- D,定长分布
- M,泊松分布
- Er,爱尔朗分布(介于泊松分布与正态分布之间)
- G,任意分布
排队可以分为两种:
- 有限排队:排队系统中顾客数有限
- 无限排队:排队系统中顾客数可以是无限的,到达系统后均可接受服务
有限排队系统有可以分为:
- 损失制排队系统,排队空间为零,不能处理则立刻损失
- 混合制排队系统,允许排队,但不允许无限延长
混合制排队系统一般具有以下特点:
- 队长有限
- 等待时间有限
- 逗留时间(等待时间+服务时间)有限
排队规则
- FCFS 先来先服务
- LCFS 后来先服务
- PS,具有优先权的服务
服务机制
已经知道服务太的服务时间V,对应的分布函数B(t),密度函数b(t)
负指数分布:t>0时有b(t)=μe−μtb(t)=\mu e^{-\mu t}b(t)=μe−μt
…
记号系统
Kendall记号系统:X/Y/Z/A/B/C
- X表示顾客相继到达时间间隔的分布
- Y表示服务时间的分布
- Z表示并联服务台的个数
- A表示系统容量,即总共能容纳的顾客的个数
- B表示顾客源的数目
- C表示服务规则
描述指标
一些描述排队系统的指标
- 队长:系统中的顾客数N(t)N(t)N(t)
- 排队长:系统中正在排队的顾客数