排队论基础

排队论是研究随机聚散服务系统的理论,涉及输入过程、排队规则、服务机制等。常见的排队规则包括FCFS、LCFS和PS。关键指标如队长、排队长、等待时间和逗留时间在系统平衡状态下进行分析,例如Little's定律指出逗留时间等于队列长度除以平均到达率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

排队论基础

参考《运筹学教程》-胡运权

排队论是对排队问题的研究,表示为随机聚散服务系统。聚即为到达,散即为离去,随机指的是顾客的到达情况与每个顾客接受服务的时间是随机的。

一般来说,顾客的相继到达时间与服务时间这两个量至少有一个量是未知的。因此,排队论一般被称为随机服务系统理论。

以下仅介绍基本概念

输入过程

说明顾客如何到达系统:

  1. 总数:有限/无限
  2. 到达方式:单个/成批
  3. 相继到达时间的分布:设Tn为第n个顾客的到达时间,先假设n个顾客相继到达,即T_1<T_2<...<T_n,设X_n=T_n-T_{n-1},则假定Xn是独立同分布的。

分布有:

  • D,定长分布
  • M,泊松分布
  • Er,爱尔朗分布(介于泊松分布与正态分布之间)
  • G,任意分布

排队可以分为两种:

  • 有限排队:排队系统中顾客数有限
  • 无限排队:排队系统中顾客数可以是无限的,到达系统后均可接受服务

有限排队系统有可以分为:

  • 损失制排队系统,排队空间为零,不能处理则立刻损失
  • 混合制排队系统,允许排队,但不允许无限延长

混合制排队系统一般具有以下特点:

  1. 队长有限
  2. 等待时间有限
  3. 逗留时间(等待时间+服务时间)有限

排队规则

  • FCFS 先来先服务
  • LCFS 后来先服务
  • PS,具有优先权的服务

服务机制

已经知道服务太的服务时间V,对应的分布函数B(t),密度函数b(t)

负指数分布:t>0时有b(t)=μe−μtb(t)=\mu e^{-\mu t}b(t)=μeμt

记号系统

Kendall记号系统:X/Y/Z/A/B/C

  • X表示顾客相继到达时间间隔的分布
  • Y表示服务时间的分布
  • Z表示并联服务台的个数
  • A表示系统容量,即总共能容纳的顾客的个数
  • B表示顾客源的数目
  • C表示服务规则

描述指标

一些描述排队系统的指标

  • 队长:系统中的顾客数N(t)N(t)N(t)
  • 排队长:系统中正在排队的顾客数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值