hdu 5017 Ellipsoid

本文介绍如何运用模拟退火算法解决三维椭球面上从原点到任意点的最短距离问题。通过设定初始温度、迭代降温等步骤,实现高效的路径搜索,最终找到最小距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ellipsoid

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1028    Accepted Submission(s): 364
Special Judge


Problem Description
Given a 3-dimension ellipsoid(椭球面)

your task is to find the minimal distance between the original point (0,0,0) and points on the ellipsoid. The distance between two points (x1,y1,z1) and (x2,y2,z2) is defined as 
 

Input
There are multiple test cases. Please process till EOF.

For each testcase, one line contains 6 real number a,b,c(0 < a,b,c,< 1),d,e,f(0 ≤ d,e,f < 1), as described above. It is guaranteed that the input data forms a ellipsoid. All numbers are fit in double.
 

Output
For each test contains one line. Describes the minimal distance. Answer will be considered as correct if their absolute error is less than 10-5.
 

Sample Input
1 0.04 0.01 0 0 0
 

Sample Output
1.0000000
 

这道题目就相对来说更接近模拟退火的算法了,每次像八个方向试探,初始温度设置在(0.8,1)左右,不然AC不了。很奇怪吧,一般来说初始温度越高越好,但这题却不是。之后就是逐渐降温了。

代码:

#include<cstdio>
#include<iostream>
#include<cmath>
#include<stdlib.h>
#include<ctime>
#define eps 1e-8
using namespace std;

double a,b,c,d,e,f;
const double inf=1LL<<60;
int dx[]={-1,-1,-1,0,0,1,1,1};
int dy[]={-1,0,1,-1,1,-1,0,1};
double dis(double x,double y,double z){
    return sqrt(x*x+y*y+z*z);
}
double getz(double x,double y){
    double ta=c,tb=d*y+e*x,tc=a*x*x+b*y*y+f*x*y-1;
    double delta=tb*tb-4*ta*tc;
    if(delta<0) return inf;
    double z1=(-tb+sqrt(delta))/(2*ta);
    double z2=(-tb-sqrt(delta))/(2*ta);
    return z1*z1<z2*z2?z1:z2;
}
void solve(){
    double x=0,y=0,z=getz(x,y),delta=0.8;
    while(delta>eps){
        for(int i=0;i<8;i++){
            double tx=x+dx[i]*delta,
                ty=y+dy[i]*delta,
                tz=getz(tx,ty);
            if(tz>inf/10) continue;
            if(dis(tx,ty,tz)-dis(x,y,z)<0)
                x=tx,y=ty,z=tz;
        }
        delta*=0.99;
    }
    printf("%.7f\n",dis(x,y,z));
}
int main()
{
    srand((unsigned)time(NULL));
    while(~scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f)){
        solve();
    }
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值