Ellipsoid
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1028 Accepted Submission(s): 364
Special Judge
Problem Description
Given a 3-dimension ellipsoid(椭球面)

your task is to find the minimal distance between the original point (0,0,0) and points on the ellipsoid. The distance between two points (x1,y1,z1) and (x2,y2,z2) is defined as

your task is to find the minimal distance between the original point (0,0,0) and points on the ellipsoid. The distance between two points (x1,y1,z1) and (x2,y2,z2) is defined as

Input
There are multiple test cases. Please process till EOF.
For each testcase, one line contains 6 real number a,b,c(0 < a,b,c,< 1),d,e,f(0 ≤ d,e,f < 1), as described above. It is guaranteed that the input data forms a ellipsoid. All numbers are fit in double.
For each testcase, one line contains 6 real number a,b,c(0 < a,b,c,< 1),d,e,f(0 ≤ d,e,f < 1), as described above. It is guaranteed that the input data forms a ellipsoid. All numbers are fit in double.
Output
For each test contains one line. Describes the minimal distance. Answer will be considered as correct if their absolute error is less than 10-5.
Sample Input
1 0.04 0.01 0 0 0
Sample Output
1.0000000
代码:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<stdlib.h>
#include<ctime>
#define eps 1e-8
using namespace std;
double a,b,c,d,e,f;
const double inf=1LL<<60;
int dx[]={-1,-1,-1,0,0,1,1,1};
int dy[]={-1,0,1,-1,1,-1,0,1};
double dis(double x,double y,double z){
return sqrt(x*x+y*y+z*z);
}
double getz(double x,double y){
double ta=c,tb=d*y+e*x,tc=a*x*x+b*y*y+f*x*y-1;
double delta=tb*tb-4*ta*tc;
if(delta<0) return inf;
double z1=(-tb+sqrt(delta))/(2*ta);
double z2=(-tb-sqrt(delta))/(2*ta);
return z1*z1<z2*z2?z1:z2;
}
void solve(){
double x=0,y=0,z=getz(x,y),delta=0.8;
while(delta>eps){
for(int i=0;i<8;i++){
double tx=x+dx[i]*delta,
ty=y+dy[i]*delta,
tz=getz(tx,ty);
if(tz>inf/10) continue;
if(dis(tx,ty,tz)-dis(x,y,z)<0)
x=tx,y=ty,z=tz;
}
delta*=0.99;
}
printf("%.7f\n",dis(x,y,z));
}
int main()
{
srand((unsigned)time(NULL));
while(~scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f)){
solve();
}
return 0;
}