K-means cluster

本文介绍了K-means聚类算法的工作原理,包括初始化聚类中心、计算样本距离、按照最近原则进行聚类直到收敛。虽然算法简单且收敛快,但可能选出的代表点不够理想,且不适合处理大规模数据。通过一个明显的二分类样本集例子展示了K-means聚类的效果,并提供了MATLAB代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K - means cluster
1.K均值聚类(迭代算法):
  1. C_center:初始化K个聚类中心
  2. 计算样本集合到C_center的距离(本例使用欧几里德距离)
  3. 按照最近原则进行聚类,如果聚类中心不发生改变,结束
  4. 如果发生改变,得到新的聚类中心->C_center,重复直到收敛
2.使用条件:先验知识知道样本集合能够K分类(才能得到较好的聚类效果),属于无监督学习;
3.优缺点:
  • 算法简单,收敛
  • 选出的每类代表可能并不具有代表性,算法需要进行多次迭代,把所有的数据读入内存中,大量数据可能不适用

4.样例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值