《数据仓库工具箱 - 纬度建模权威指南》--- 第一章 数据仓库、商业智能及纬度建模初步读书笔记

本文是《数据仓库工具箱 - 纬度建模权威指南》第一章的读书笔记,探讨了数据仓库(DW)、商业智能(BI)的目标,解释了数据获取与数据分析的区别,介绍了维度建模的重要性及其在不同架构中的角色,以及Kimball的DW/BI架构。文章强调了维度建模在理解业务用户需求、提供高效查询性能方面的优势,并对比了不同DW/BI架构的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简述:

该章节主要的讨论点:

  • DW/BI的业务驱动目标

  • 发布DW/BI系统的隐喻

  • 维度建模和新概念以及涉及的主要词汇,包括事实表于维度表

  • Kimball DW/BI 架构的组件与原则

  • 不同DW/BI架构的比较研究,维度建模在不同架构中所扮演的角色

文章主干:

一、数据获取与数据分析的区别

二、数据仓库与商业智能的目标

三、纬度建模简介

四、Kimball的DW/BI架构

五、其他DW/BI架构

六、维度建模神话

一、数据获取与数据分析的区别

信息数据的作用/目的:

  • 操作性记录的保存

  • 分析型决策的制定

DW/BI系统则是消费/使用数据。

操作型系统的用户确保组织能正常运转。操作型系统获取订单、签订新客户、监视操作型活动的状态、记录问题以及用户的信息。对操作型系统进行优化的目的使其更快的处理事务。

操作烯烃一般一次处理一个事务记录。例如预测的方式完成同样的操作型任务,可以预测地执行组织的业务过程。鉴于这种执行特点,操作型系统通常不必维护历史数据,只需要修改数据以反映最新的状态。

另外一方面,DW/BI系统的用户研究分析企业的运转,并对其性能进行评估。DW/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨鑫newlfe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值