机器学习西瓜书 --- 评估方法或数据集划分方法

本文介绍了机器学习中常用的评估方法,包括留出法、分层采样、交叉验证(K折交叉验证,特别是留一法)以及自助法(Bootstrap sampling)。这些方法用于在有限数据集上评估模型的泛化能力,其中交叉验证和自助法在数据量较小或难以划分训练集和测试集时特别有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 评估的方法

    • 留出法 hold-out

      • 直接将数据集划分为两个互斥的集合,其中一个集合留作训练集合S,另一个作为测试集合T。在S上训练出模型后,用T来评估其测试误差,作为对泛化误差的评估。

      • 分层采样

        • 保留类别的采样称为分层采样。

    • 交叉验证法 cross validation

      • 先将数据集D划分为K个大小相似的互斥子集。每个子集D(i)都保持数据分布的一致性,即从D中通过分层采样得到,然后每次用到 k - 1 个子集的并集作为训练集,余下的那个子集作为测试集,这样就可以获得k个训练机/测试集,从而进行K次训练和测试,最终返回的是这K个测试结果的均值。显然,交叉验证法评估结果的稳定性和保真性在很大程度上取决于K的取值,为强调这一点,通常把交叉验证法称为“K折交叉验证”。假设数据集D中包含m个样本,若另k = m,则得到了交叉验证法的一个特例,留一法(Leave-One-Out).

      • 缺点开销比较大。

    • 自助法 boostrapping

      • 直接以自主采样法(Boostsrap sampling)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨鑫newlfe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值