-
评估的方法
-
-
留出法 hold-out
-
-
直接将数据集划分为两个互斥的集合,其中一个集合留作训练集合S,另一个作为测试集合T。在S上训练出模型后,用T来评估其测试误差,作为对泛化误差的评估。
-
分层采样
-
-
保留类别的采样称为分层采样。
-
-
-
交叉验证法 cross validation
-
-
先将数据集D划分为K个大小相似的互斥子集。每个子集D(i)都保持数据分布的一致性,即从D中通过分层采样得到,然后每次用到 k - 1 个子集的并集作为训练集,余下的那个子集作为测试集,这样就可以获得k个训练机/测试集,从而进行K次训练和测试,最终返回的是这K个测试结果的均值。显然,交叉验证法评估结果的稳定性和保真性在很大程度上取决于K的取值,为强调这一点,通常把交叉验证法称为“K折交叉验证”。假设数据集D中包含m个样本,若另k = m,则得到了交叉验证法的一个特例,留一法(Leave-One-Out).
-
缺点开销比较大。
-
-
自助法 boostrapping
-
-
直接以自主采样法(Boostsrap sampling)
-
-
机器学习西瓜书 --- 评估方法或数据集划分方法
最新推荐文章于 2023-01-24 12:27:16 发布