情感分析处理-学习paddle

本文探讨了情感分析的三个主要任务:文章情感分类、句子级情感分类和评价对象级情感分类,并介绍了序列标注模型的概念,如BIO标签体系。此外,还提到了命名实体识别在NLP中的重要性及其常用解决方案,如LSTM/GRU+CRF和预训练模型。SKEP模型则用于自动挖掘情感知识,通过多任务学习来增强情感表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

情感分析分为三个经典任务
文章情感分类
句子级情感分类(Sentence-level Sentiment Classification)、
评价对象级情感分类(Aspect-level Sentiment Classification)、
什么是序列标注模型:
1.输入输出都是序列,以字为单位
2.输入、输出序列一一对应
3.分类问题的一种推广,一种结构化的分类

 BIO 的序列标注体系进行了标签的拓展:
 B-Aspect, I-Aspect, B-Opinion, I-Opinion, O,其中前两者用于标注评论属性,后两者用于标注评论观点。

命名实体识别是NLP中一项非常基础的任务,是信息提取、问答系统、句法分析、机器翻译等众多NLP任务的重要基础工具。命名实体识别的准确度,决定了下游任务的效果,是NLP中的一个基础问题。在NER任务提供了两种解决方案,一类LSTM/GRU + CRF,通过RNN类的模型来抽取底层文本的信息,而CRF(条件随机场)模型来学习底层Token之间的联系;另外一类是通过预训练模型,例如ERNIE,BERT模型,直接来预测Token的标签信息。

SKEP 运行
1.基于统计方法从大量无标记数据中自动挖掘情感知识,包括情感词以及观点搭配构成的二元组
2.SKEP 对原始输入句子中的部分词语进行屏蔽(Mask)
3.SKEP 设计了三个情感优化目标
	3.1 要求模型复原被屏蔽的情感信息,包括:基于多标签优化的观点搭配预测
	3.2 情感词预测
	3.3 情感极性分类
4.通过面向情感的优化目标进行预训练,自动挖掘的情感知识就被有效地嵌入到模型的语义表示中,最终形成面向情感的语义表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值