【LangChain】langchain_core.documents.Document 类:封装文本内容(page_content)及其相关元数据(metadata)

langchain_core.documents.Document 是 LangChain 框架中的核心类,用于封装文本内容及其相关元数据,是构建基于大型语言模型(LLM)应用的基础组件。它在文档加载、文本分割、向量存储和问答系统等场景中扮演重要角色。本文将从定义、属性、创建方法、应用场景、示例代码和注意事项等方面,详细讲解 Document 类的功能与使用方法。


一、定义与作用

1. 什么是 Document 类?

Document 类是 LangChain 框架中用于表示文档的标准化数据结构,继承自 BaseMedia 类。它设计用于存储一段文本内容(page_content)及其相关元数据(metadata),便于在 LLM 应用中进行文档管理、处理和检索。

  • 核心功能

    • 封装文本内容和元数据,提供统一的文档表示。
    • 支持 LangChain 生态系统中的模块化操作,如文档加载、分割、嵌入和检索。
    • 适用于上下文感知、问答系统、检索增强生成(RAG)等场景。
  • 设计目标

    • 提供简单、灵活的接口,适应多种数据源(如 PDF、网页、数据库)。
    • 确保与 LangChain 的其他组件(如链、代理、向量存储)无缝集成。
2. 为什么需要 Document 类?

在 LLM 应用中,原始文本数据往往需要附加上下文信息(如来源、作者、时间戳),以便在检索、过滤或生成答案时使用。Document 类通过将文本和元数据统一封装,简化了这些操作,降低了开发复杂度。


二、核心属性

Document 类的属性清晰定义,支持文本和元数据的灵活存储。以下是其主要属性的详细说明:

属性名称描述类型/约束是否必需版本新增
page_content文档的主要文本内容,必须提供str必需-
metadata可选的字典,存储与文档相关的元数据,如来源、作者、时间等dict可选-
id可选的唯一标识符,建议使用 UUID,格式不强制strNone可选
type固定为“Document”,用于内部类型检查和序列化Literal['Document']自动设置-
属性详解:
  1. page_content

    • 存储文档的核心文本内容,是与 LLM 交互的主要数据。
    • 必须是字符串类型,不能为空。
    • 示例:一段文章的正文、网页的段落内容等。
  2. metadata

    • 一个字典,用于存储任意键值对,表示文档的附加信息。
    • 常见元数据包括:
      • source:文档来源(如 URL 或文件路径)。
      • author:文档作者。
      • timestamp:创建或修改时间。
    • 元数据在检索和过滤时非常有用,例如仅检索特定来源的文档。
  3. id

    • 从 LangChain 版本 0.2.11 开始引入,用于为文档提供唯一标识。
    • 建议使用 UUID(如 uuid.uuid4()),但格式不强制。
    • 在管理大型文档集合或向量存储时,id 有助于跟踪和区分文档。
  4. type

    • 固定值为“Document”,由类自动设置。
    • 用于 LangChain 内部的类型检查和序列化,确保对象的一致性。

三、创建 Document 实例

创建 Document 实例非常简单,可以通过构造函数传递 page_content 和可选的 metadata 参数。以下是几种常见方式:

1. 基本创建
from langchain_core.documents import Document

# 创建一个简单的 Document 对象
document = Document(
    page_content="这是一个示例文档,介绍 LangChain 的功能。",
    metadata={"source": "example.com", "author": "张三", "date": "2025-05-18"}
)
2. 使用位置参数

page_content 支持作为位置参数传递,简化代码:

document = Document(
    "这是一个简短的文档。",
    metadata={"source": "local_file.txt"}
)
3. 带 id 的创建

如果需要唯一标识符,可以手动指定 id

import uuid

document = Document(
    page_content="带 ID 的文档示例。",
    metadata={"source": "database"},
    id=str(uuid.uuid4())
)
4. 动态生成多个 Document

在实际应用中,文档通常成批生成,例如从文件或网页加载:

documents = [
    Document(
        page_content=f"文档 {i} 的内容",
        metadata={"index": i, "source": f"file_{i}.txt"}
    ) for i in range(3)
]

四、常见用途与应用场景

Document 类在 LangChain 的多个模块中广泛应用,以下是其主要场景及实际用途:

1. 文档加载
  • 场景:从外部数据源(如 PDF、网页、CSV、数据库)加载内容时,加载器会将数据转换为 Document 对象。
  • 示例:使用 HNLoader 加载 Hacker News 评论:
    from langchain_community.document_loaders import HNLoader
    
    loader = HNLoader("https://news.ycombinator.com/item?id=34422627")
    documents = loader.load()
    # documents 是 Document 对象的列表,每个对象包含评论内容和元数据
    
  • 作用:将原始数据标准化为 Document,便于后续处理。
2. 文本分割
  • 场景:将长文档分割成小块,以便嵌入向量空间或输入 LLM。
  • 示例:使用 CharacterTextSplitter 进行分割:
    from langchain.text_splitter import CharacterTextSplitter
    
    long_document = Document(
        page_content="这是一篇很长的文章..." * 100,
        metadata={"source": "article.txt"}
    )
    splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=20)
    split_documents = splitter.split_documents([long_document])
    # split_documents 是多个小 Document 对象的列表
    
  • 作用:每个小块保留原始元数据,适合 RAG 或上下文管理。
3. 向量存储与检索增强生成 (RAG)
  • 场景:在 RAG 系统中,Document 对象被嵌入到向量空间,用于相似性搜索。
  • 示例:使用 Chroma 向量存储:
    from langchain.vectorstores import Chroma
    from langchain.embeddings import OpenAIEmbeddings
    
    documents = [
        Document(page_content="Python 是一种编程语言", metadata={"topic": "programming"}),
        Document(page_content="LangChain 是一个 LLM 框架", metadata={"topic": "AI"})
    ]
    vectorstore = Chroma.from_documents(documents, OpenAIEmbeddings())
    results = vectorstore.similarity_search("编程语言", k=1)
    # results 返回匹配的 Document 对象
    
  • 作用Document 提供文本和元数据,支持高效检索。
4. 问答系统
  • 场景:在 QA 链中,Document 提供上下文,帮助 LLM 生成准确答案。
  • 示例:构建一个简单的 QA 系统:
    from langchain.chains import RetrievalQA
    from langchain.llms import OpenAI
    
    # 假设已有 vectorstore 和 documents
    qa_chain = RetrievalQA.from_chain_type(
        llm=OpenAI(),
        retriever=vectorstore.as_retriever()
    )
    answer = qa_chain.run("LangChain 是什么?")
    print(answer)
    
  • 作用Document 作为上下文来源,确保答案基于相关文档。
5. 记忆与上下文管理
  • 场景:在对话系统中,Document 可以存储历史对话或参考资料,作为记忆输入。
  • 示例:将对话历史保存为 Document
    conversation_doc = Document(
        page_content="用户:LangChain 是什么?\nAI:LangChain 是一个 LLM 框架。",
        metadata={"session_id": "123", "timestamp": "2025-05-18"}
    )
    

五、示例代码:完整工作流

以下是一个结合文档加载、分割和检索的完整示例,展示 Document 类的实际应用:

from langchain_core.documents import Document
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings

# 1. 创建 Document 对象
documents = [
    Document(
        page_content="LangChain 是一个用于构建 LLM 应用的框架,支持文档加载、分割和检索。",
        metadata={"source": "langchain_docs", "category": "AI"}
    ),
    Document(
        page_content="Python 是一种简单易学的编程语言,广泛用于数据科学。",
        metadata={"source": "python_docs", "category": "programming"}
    )
]

# 2. 文本分割
splitter = CharacterTextSplitter(chunk_size=50, chunk_overlap=10)
split_docs = splitter.split_documents(documents)

# 3. 创建向量存储
vectorstore = Chroma.from_documents(split_docs, OpenAIEmbeddings())

# 4. 检索相关文档
query = "LLM 框架是什么?"
results = vectorstore.similarity_search(query, k=1)
for doc in results:
    print(f"内容: {doc.page_content}")
    print(f"元数据: {doc.metadata}")

输出示例

内容: LangChain 是一个用于构建 LLM 应用的框架
元数据: {'source': 'langchain_docs', 'category': 'AI'}

六、注意事项与最佳实践

  1. 元数据设计

    • 保持元数据结构一致,例如统一 sourcecategory 的格式,便于检索和过滤。
    • 避免在元数据中存储过大或无关的信息,以减少内存占用。
  2. 使用 id 的建议

    • 对于大型文档集合,建议为每个 Document 设置唯一 id(如 UUID),以便在数据库或向量存储中跟踪。
    • 示例:id=str(uuid.uuid4())
  3. 版本兼容性

    • 在 LangChain 早期版本(如 v0.1),Document 可能位于 langchain.schema 模块,升级到新版本时注意导入路径:
      from langchain_core.documents import Document  # 新版本
      
  4. 性能优化

    • 在处理大量文档时,使用批量操作(如 Chroma.from_documents)而不是逐个处理。
    • 合理设置文本分割的 chunk_sizechunk_overlap,以平衡检索精度和性能。
  5. 错误处理

    • 确保 page_content 不为空,否则会抛出异常。
    • 检查元数据的键值类型,避免序列化问题(例如不可序列化的对象)。

七、总结

langchain_core.documents.Document 类是 LangChain 框架中用于管理文档的核心工具,通过封装文本内容和元数据,支持文档加载、分割、嵌入和检索等功能。它在 RAG、问答系统和上下文管理等场景中至关重要,具有简单、灵活和高扩展性的特点。

通过理解 Document 类的属性、创建方法和应用场景,开发者可以更高效地构建 LLM 应用。无论是处理单个文档还是管理大规模文档集合,Document 都提供了可靠的基础支持。

参考资源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值