推荐模型-序列推荐-2019:SRGNN

本文介绍了2019年Shu等人在AAAI会议上提出的Session-based Recommendation with Graph Neural Networks (SRGNN)模型,探讨了如何利用图神经网络技术改进基于会话的推荐系统。研究者展示了SRGNN在捕捉用户行为序列中的动态上下文信息方面的优势。代码可在[链接](https://github.com/CRIPAC-DIG/SR-GNN)获取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐模型-序列推荐-2019:SRGNN

Reference:
Shu Wu et al. "Session-based Recommendation with Graph Neural Networks." in AAAI 2019.
Reference code:
https://github.com/CRIPAC-DIG/SR-GNN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值