柯西点列
设 X=(X,d)X = ( X , d )X=(X,d) 是度量空间, { xn}\left\{ x _ { n } \right\}{ xn} 是 XXX中点列,如果对任意给定的正数 ε>0,\varepsilon > 0 ,ε>0,存在正整数 N=N(ε),N = N ( \varepsilon ) ,N=N(ε), 使当 n,m>Nn , m > Nn,m>N 时,必有
d(xn,xm)<ε,d \left( x _ { n } , x _ { m } \right) < \varepsilon ,d(xn,xm)<ε,
则称 { xn}\left\{ x _ { n } \right\}{ xn} 是 XXX中的柯西点列或基本点列。
如果度量空间 (X,d)( X , d )(X,d) 中每个柯西点列都在(X,d)( X , d )(X,d) 中收敛,那么称 (X,d)( X , d )(X,d) 是完备的度量空间。
注意:这里要求在 XXX 中存在一点,使该柯西点列收敛到这一点。
例1
l∞l ^ { \infty }l∞ 是完备度量空间。
证明
设 {
xm}\left\{ x _ { m } \right\}{
xm} 是 l∞l ^ { \infty }l∞ 中 的柯西点列,其中 xm=(ξ1(m),ξ2(m),⋯ ),x _ { m } = \left( \xi _ { 1 } ^ { ( m ) } , \xi _ { 2 } ^ { ( m ) } , \cdots \right) ,xm=(ξ1(m),ξ2