泛函分析基础7-1-度量空间4-2-3:完备度量空间-例01【令l∞为有界实/复数列全体,对其中任意两点x=(x₁…),y=(x₁…),定义d(x,y)=sup∣xᵢ-yᵢ|,l∞是完备度量空间】

柯西点列

X=(X,d)X = ( X , d )X=(X,d) 是度量空间, { xn}\left\{ x _ { n } \right\}{ xn}XXX中点列,如果对任意给定的正数 ε>0,\varepsilon > 0 ,ε>0,存在正整数 N=N(ε),N = N ( \varepsilon ) ,N=N(ε), 使当 n,m>Nn , m > Nn,m>N 时,必有

d(xn,xm)<ε,d \left( x _ { n } , x _ { m } \right) < \varepsilon ,d(xn,xm)<ε,

则称 { xn}\left\{ x _ { n } \right\}{ xn}XXX中的柯西点列基本点列

如果度量空间 (X,d)( X , d )(X,d) 中每个柯西点列都在(X,d)( X , d )(X,d) 中收敛,那么称 (X,d)( X , d )(X,d)完备的度量空间

注意:这里要求在 XXX 中存在一点,使该柯西点列收敛到这一点。


例1
l∞l ^ { \infty }l 是完备度量空间。

证明
{ xm}\left\{ x _ { m } \right\}{ xm}l∞l ^ { \infty }l 中 的柯西点列,其中 xm=(ξ1(m),ξ2(m),⋯ ),x _ { m } = \left( \xi _ { 1 } ^ { ( m ) } , \xi _ { 2 } ^ { ( m ) } , \cdots \right) ,xm=(ξ1(m),ξ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值