解决ax+by=c,不定方程(扩展欧几里得)

本文详细介绍了扩展欧几里得算法的核心原理与应用,包括求解最大公约数及线性不定方程的方法,并提供了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先有几个定理我们需要知道,在这里我也会一一证明。

——————————————————————————————————————

定理1:gcd(a,b)==gcd(b,a%b);这个是欧几里得提出并证明的。 (%是取余的意思,在数学中

可用mod表示);

以下是证明过程

——————————————————————————————————————

令a = k * b + r; (k为整数);=> r = a%b;

设d是a,b的任意一个公约数。=> d|a, d|b(d|a的意思是d能被a整除);

又 r = k * b - a    =>d|(k*b - a);

以上可得d|b, d|(a%b),   =>d是b, a % b的公约数;

以上得 d既是a,b的公约数,又是b, a % b的公约数;

以上可得 gcd(a, b) == gcd(b, a%b);

证毕

——————————————————————————————————————


定理2:a*x + b*y ==gcd(a,b)一定存在解。这个定理又叫裴蜀定理,或贝祖定理。

以下会证明过程

——————————————————————————————————————

现在还不会............

——————————————————————————————————————



以下是求解 a*x +b*y  == gcd(a,b)的过程。

——————————————————————————————————————

当 b = 0时,a * x == gcd(a,0) == a;  =>x=1,y=0;

当a>b>0时:

由定理1得gcd(a,b) == gcd(b,a%b);

易得 a*X1 + b*Y1 == b * X2 + (a % b) * Y2;

=> a*X1 + b*Y1 == b * X2 +(a-[a / b] * b) * Y2;  (此处的/是不带余除法,也就是c++中的/);

=> a*X1 + b*Y1 == a * Y2 + b * (X2 - [a / b] * y2);

以上可得 1. X1 == Y2;

               2.Y1 == X2 - [a / b] * y2;

显然 以上两个方程式可以一直递归下去;

我们只要递归到b == 0的时候,就能求出Xn = 1, Yn = 0。然后我们一直往前回溯就能求出

X1,Y1;

代码如下:

#include<stdio.h>
int exgcd(int a, int b, int &x, int &y);
int main()
{
	
	int a, b, x = 0, y = 0;
	
	scanf("%d %d",&a, &b);
	
	int gcd = exgcd(a,b,x,y);
	
	printf("%d %d %d\n", gcd, x, y);
	
	
	return 0;
} 

int exgcd(int a, int b, int &x, int &y)
{
	
	if(b>a)
	return exgcd( b,  a,  y,  x);
	
	if(b==0)
	{
		x = 1, y = 0;
		return a;
	}
	int r=exgcd(b, a%b, x, y);
	
	int temp = x;
	
	x = y;
	
	y = temp - (a/b) * y;
	
	return r;
	
}

以上是求 a*x +b*y == gcd(a,b)某一组特解X1,Y1的过程

所以a*x + b*y == gcd(a,b)的通解为 X = X1 - b/gcd(a,b)*t

                                                        Y = Y1 + a/gcd(a,b)*t        t为任意整数。

——————————————————————————————————————



以下就是求ax + by = c的过程。为了好表示,我们将上一步的ax + by == gcd(a,b) 等价为

 am + bn == gcd(a,b).

——————————————————————————————————————

当c % gcd(a,b) == 0 时有解,令 k * gcd(a,b) == c;

=> k*a*m + k*b*n == k*gcd(a,b);

=>x == k*m == c*m/gcd(a,b)  ,  y == k*n == c*n/gcd(a,b) ;


设 X0 ,Y0 是 a*x + by 的某一特解。则 该不定方程的通解为

X = X0 - b/gcd(a,b)*t;

Y = Y0 + a/gcd(a,b)*t;            t为任意一个整数

X = (c*M0 - b*t)/gcd(a,b);

Y = (c*N0 + a*t)/gcd(a,b);

——————————————————————————————————————



综上求解不定方程a*x + b*y == c的步骤为

1.  先用扩展欧几里得求出 a*m + b* y ==gcd(a,b)的一组特解 M0,N0;

2.  求出a*x + b*y ==c 的通解为    X = (c*M0 - b*t)/gcd(a,b);

                                                     Y = (c*N0 + a*t)/gcd(a,b);




<think>好的,用户想了解如何用编程方法解线性方程 ax + by + c = 0。我需要先理解这个方程的结构和解的情况。首先,这个方程是一个二元一次方程,解的情况取决于系数a和b是否为零,以及常数项c的情况。 根据用户提供的引用资料,特别是引用[3]和引用[4],涉及到扩展欧几里得算法和线性方程解的讨论。引用[3]提到,当d是a和b的最大公约数时,方程ax + by = d有解,而引用[4]则讨论了模线性方程的解法。不过用户的问题是关于ax + by + c = 0,可能需要调整形式,比如移项得到ax + by = -c,这样问题就转化为寻找满足这个等式的整数解x和y。 接下来,我需要考虑编程实现的步骤。首先判断方程是否有解。根据贝祖定理,如果a和b的最大公约数d不能整除-c,那么方程无解。否则,存在解。这时候可以用扩展欧几里得算法找到一组特解,然后通过通解公式得到所有解。 然后,用户可能需要具体的代码示例。考虑到用户提供的引用中有C语言和Python的例子,但用户的问题可能需要一个通用的编程方法。需要选择一种语言,比如Python,因为示例中有Python代码,可能更易读。但要注意,用户的问题中的方程是ax + by + c = 0,可能需要处理系数为零的情况。 比如,当a和b都为零时,如果c不为零,则无解;如果c也为零,则无穷解。如果其中一个系数为零,比如a=0,方程变为by + c = 0,此时需要b不为零才能解出y,否则可能无解。这部分需要分情况讨论。 接下来,代码需要处理这些情况。首先输入a, b, c,然后判断各种情况。对于a和b不全为零的情况,计算d = gcd(a, b),然后检查d是否能整除-c。如果不行,无解。否则,使用扩展欧几里得算法找到x0和y0,然后生成通解。 然后,在代码实现中,如何实现扩展欧几里得算法是关键。根据引用[3],扩展欧几里得算法可以求解ax + by = d的解,然后通过调整得到ax + by = -c的解。例如,将解乘以(-c)/d。 另外,用户的问题可能希望得到整数解,或者实数解?根据引用[5],提到求不定方程的所有正整数解,但用户的问题中的方程可能有不同的解的情况。需要明确解的类型。假设用户需要整数解,那么编程方法需要处理整数解的情况,否则如果是实数解,解集是一条直线,可以用参数表示。 但根据用户提供的引用,特别是引用[3]和[5],都是关于整数解的情况,所以可能用户需要的是整数解的编程方法。因此,代码需要处理整数解的情况,分情况讨论,并输出所有可能的解,或者说明解的情况。 最后,生成相关问题需要考虑用户可能进一步的问题,比如如何处理非整数解,或者如何优化算法,或者应用场景等。</think>### 如何用编程方法解线性方程 $ax + by + c = 0$? #### 步骤分析 1. **方程形式转换** 将原方程改写为 $ax + by = -c$,便于使用整数解的求解方法[^3]。 2. **判断解的存在性** 根据贝祖定理,当且仅当 $\gcd(a, b)$ 能整除 $-c$ 时,方程存在整数解[^4]。若 $a$ 或 $b$ 为0,需单独处理: - 若 $a=0$ 且 $b=0$:若 $c \neq 0$,无解;若 $c=0$,无穷解。 - 若 $a=0$:方程变为 $by = -c$,要求 $b \neq 0$ 且 $b$ 能整除 $-c$。 - 若 $b=0$:同理。 3. **扩展欧几里得算法求特解** 若 $\gcd(a, b) \mid c$,通过扩展欧几里得算法找到方程 $ax + by = \gcd(a, b)$ 的特解 $(x_0, y_0)$,再乘以缩放因子 $k = -c / \gcd(a, b)$ 得到原方程的特解[^3]。 4. **生成通解** 通解形式为: $$ x = x_0 \cdot k + \frac{b}{d} \cdot t, \quad y = y_0 \cdot k - \frac{a}{d} \cdot t $$ 其中 $d = \gcd(a, b)$,$t$ 为整数参数[^5]。 #### 代码实现(Python) ```python def extended_gcd(a, b): if b == 0: return a, 1, 0 else: d, x, y = extended_gcd(b, a % b) return d, y, x - (a // b) * y def solve_linear_equation(a, b, c): # 处理特殊情况 if a == 0 and b == 0: return "无解" if c != 0 else "无穷解" elif a == 0: return f"解为任意实数x,y = {-c/b}" if b != 0 and c % b == 0 else "无整数解" elif b == 0: return f"解为x = {-c/a}, 任意实数y" if a != 0 and c % a == 0 else "无整数解" # 一般情况 d, x0, y0 = extended_gcd(a, b) if (-c) % d != 0: return "无整数解" k = (-c) // d x_specific = x0 * k y_specific = y0 * k # 通解形式 t_param = "t" x_general = f"{x_specific} + {b//d} * {t_param}" y_general = f"{y_specific} - {a//d} * {t_param}" return f"整数解通解:x = {x_general}, y = {y_general}(t为整数)" # 示例输入 a, b, c = 2, 4, -6 print(solve_linear_equation(a, b, c)) # 输出:整数解通解:x = -3 + 2 * t, y = 3 - 1 * t(t为整数) ``` #### 说明 - **扩展欧几里得算法**:用于求解方程 $ax + by = \gcd(a, b)$ 的特解,时间复杂度为 $O(\log(\min(a, b)))$[^3]。 - **通解推导**:通过参数化所有可能的解,覆盖所有整数解的情况[^5]。 - **边界处理**:包含对零系数和无穷解的判断,提高代码鲁棒性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值