uva 10401(dp)

本文介绍了一种使用动态规划解决N皇后问题的方法。通过输入特定格式的字符串来确定棋盘的状态,并利用f[i][j]数组计算在第i行第j列放置皇后的所有可能方案。最终统计出所有合法布局的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:n皇后问题,输入一行字符串,长度是n就是n*n的棋盘,如果字符是‘?’就是这一列任意位置都可以摆放皇后,如果i是1~F,是这一列第i行必须摆放一个皇后。

题解:f[i][j]数组是在第i行第j列摆放皇后的总方法数,状态转移方程f[i][j] += f[i - 1][k] (|j - k| > 1)。最后把最后一列的方法数加起来就是总的方法数。

#include <stdio.h>
#include <string.h>
#include <math.h>
const int N = 20;
char str[N];
long long f[N][N];
int n;

int main() {
	while (scanf("%s", str) != EOF) {
		memset(f, 0, sizeof(f));
		n = strlen(str);
		if (str[0] == '?')
			for (int i = 0; i < n; i++)
				f[i][0] = 1;
		else if (str[0] >= 'A' && str[0] <= 'F')
			f[str[0] - 'A' + 9][0] = 1;
		else if (str[0] >= '1' && str[0] <= '9')
			f[str[0] - '1'][0] = 1;

		for (int i = 1; i < n; i++) {
			if (str[i] == '?') {
				for (int j = 0; j < n; j++) {
					for (int k = 0; k < n; k++) {
						if (fabs(j - k) <= 1)
							continue;
						f[j][i] += f[k][i - 1];
					}
				}
			}
			else {
				if (str[i] >= 'A' && str[i] <= 'F') {
					int j = str[i] - 'A' + 9;
					for (int k = 0; k < n; k++) {
						if (fabs(j - k) <= 1)
							continue;
						f[j][i] += f[k][i - 1];
					}
				}
				else if (str[i] >= '1' && str[i] <= '9') {
					int j = str[i] - '1';
					for (int k = 0; k < n; k++) {
						if (fabs(j - k) <= 1)
							continue;
						f[j][i] += f[k][i - 1];
					}
				}
			}
		}
		long long res = 0;
		for (int i = 0; i < n; i++)
			res += f[i][n - 1];
		printf("%lld\n", res);
	}
	return 0;
}


### 问题分析 UVA12099 **The Bookcase** 是一个典型的动态规划问题,涉及将多个书籍放入书架,要求最小化书架的总高度。问题的核心是: - 给定一组书籍,每个书籍具有固定的宽度和高度。 - 书架的宽度有限,书籍必须按照顺序放置,且每层书架的总宽度不能超过限制。 - 每层书架的高度是该层中所有书籍的最大高度。 - 任务是安排书籍的分布,使得书架的总高度最小化。 ### 动态规划思路 该问题可以通过动态规划求解。定义状态 `dp[i]` 表示前 `i` 本书的最小总高度。 为了优化状态转移,可以使用如下策略: - 预处理计算每本书到另一本书之间的最大高度。 - 状态转移方程为: `dp[i] = min(dp[j] + max_height(j+1..i))`,其中 `j < i` 且 `sum_width(j+1..i) <= shelf_width`。 ### C++ 实现 ```cpp #include <iostream> #include <vector> #include <algorithm> #include <climits> using namespace std; int minTotalHeight(const vector<int>& heights, const vector<int>& widths, int shelfWidth) { int n = heights.size(); vector<int> dp(n + 1, 0); // dp[i] 表示前i本书的最小总高度 dp[0] = 0; for (int i = 1; i <= n; ++i) { int max_height = 0; int total_width = 0; dp[i] = INT_MAX; for (int j = i - 1; j >= 0; --j) { total_width += widths[j]; if (total_width > shelfWidth) break; max_height = max(max_height, heights[j]); dp[i] = min(dp[i], dp[j] + max_height); } } return dp[n]; } int main() { // 示例输入 vector<int> heights = {3, 4, 2}; vector<int> widths = {6, 5, 8}; int shelfWidth = 10; int result = minTotalHeight(heights, widths, shelfWidth); cout << "Minimum total shelf height: " << result << endl; return 0; } ``` ### 实现说明 - `heights` 和 `widths` 分别表示每本书的高度和宽度。 - `shelfWidth` 是书架的宽度限制。 - `dp[i]` 记录了前 `i` 本书的最小总高度。 - 内层循环用于尝试不同的分段方式,计算当前层的最大高度,并更新 `dp[i]`。 ### 时间复杂度 - 该算法的时间复杂度为 $O(n^2)$,其中 $n$ 是书籍的数量。 - 对于较小的数据规模(如 $n \leq 1000$),该算法可以高效运行。 ### 优化思路 - 如果书籍数量较大,可以考虑使用单调队列或分治优化动态规划。 - 预处理 `max_height` 和 `total_width` 可以进一步优化性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值