hdu 1542(离散化+扫描线)

本文介绍了一种使用扫描线算法解决矩形并集面积问题的方法。通过离散化横坐标,并利用线段树维护区间状态,实现了高效计算。文章详细解释了如何通过标志位跟踪矩形边界,以及如何更新线段树来反映当前扫描状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给出n个矩形的左下角坐标和右上角坐标,问所有矩形最后并起来的面积。
题解:应该是扫描线的模板题,先离散化横坐标,把所有矩形的上下边存起来(同时存入左右横坐标),按纵坐标从小到大排序,下边标志为1,上边标志为-1,然后从下往上的进行扫描,一旦扫描线扫到某个矩形的下边,对应区间的flag加一,线段树维护的是区间有正数flag标记的长度和,扫描线扫到上边,对应区间flag减一,如果此时flag为0,线段树对应区间覆盖长度被减掉,否则不变。注意这里的flag一定非负,因为从下往上扫描一定下边的数量大于等于上边的数量,也就是1的数量大于等于-1的数量。然后就是这里求线段长度,所以左右区间分别是[left,mid] [mid,right]。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
using namespace std;
const int N = 205;
struct Line {
    int flag;
    double lx, rx, h;
    Line(double a, double b, double c, int d):lx(a), rx(b), h(c), flag(d) {}
    bool operator < (const Line &a) const { return h < a.h; }
};
int n, flag[N << 2];
double tree[N << 2];
vector<double> a;
vector<Line> line;
map<double, int> mp;

void pushup(int k) {
    tree[k] = tree[k * 2] + tree[k * 2 + 1];
}

void modify(int k, int left, int right, int l, int r, int v) {
    if (left + 1 == right) {
        flag[k] += v;
        if (flag[k])
            tree[k] = a[right] - a[left];
        else tree[k] = 0;
        return;
    }
    int mid = (left + right) / 2;
    if (l < mid)
        modify(k * 2, left, mid, l, r, v);
    if (r > mid)
        modify(k * 2 + 1, mid, right, l, r, v);
    pushup(k);
}

int main() {
    int cas = 1;
    while (scanf("%d", &n) == 1 && n) {
        a.clear(), line.clear(), mp.clear();
        memset(flag, 0, sizeof(flag));
        memset(tree, 0, sizeof(tree));
        double x1, y1, x2, y2;
        for (int i = 1; i <= n; i++) {
            scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
            line.push_back(Line(x1, x2, y1, 1));
            line.push_back(Line(x1, x2, y2, -1));
            a.push_back(x1);
            a.push_back(x2);
        }
        sort(line.begin(), line.end());
        sort(a.begin(), a.end());
        a.erase(unique(a.begin(), a.end()), a.end());
        int sz = a.size(), sz2 = line.size();
        for (int i = 0; i < sz; i++)
            mp[a[i]] = i;
        double res = 0;
        for (int i = 0; i < sz2; i++) {
            if (i != 0)
                res += (line[i].h - line[i - 1].h) * tree[1];
            modify(1, 0, sz - 1, mp[line[i].lx], mp[line[i].rx], line[i].flag);
        }
        printf("Test case #%d\nTotal explored area: %.2lf\n\n", cas++, res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值