Flink实战案例(三十三):状态管理(四)自定义键控状态(三)MapState

本文介绍了使用Flink的MapState实现实时数据去重的案例,以广告点击用户数计算为例,详细阐述了如何通过事件时间和自定义KeyedProcessFunction创建并管理状态,以及数据清理的定时器注册。此外,还提供了电商平台用户行为数据计数的场景,讲解了如何在Flink中声明和使用Keyed State进行状态管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MapState[K, V]保存Key-Value对。

  • MapState.get(key: K)
  • MapState.put(key: K, value: V)
  • MapState.contains(key: K)
  • MapState.remove(key: K)

实例一:

  去重计算应该是数据分析业务里面常见的指标计算,例如网站一天的访问用户数、广告的点击用户数等等,离线计算是一个全量、一次性计算的过程通常可以通过distinct的方式得到去重结果,而实时计算是一种增量、长期计算过程,我们在面对不同的场景,例如数据量的大小、计算结果精准度要求等可以使用不同的方案。

  此篇介绍如何通过编码方式实现精确去重,以一个实际场景为例:计算每个广告每小时的点击用户数,广告点击日志包含:广告位ID、用户设备ID(idfa/imei/cookie)、点击时间。

实现步骤分析:

  • 为了当天的数据可重现,这里选择事件时间也就是广告点击时间作为每小时的窗口期划分
  • 数据分组使用广告位ID+点击事件所属的小时
  • 选择processFunction来实现,一个状态用来保存数据、另外一个状态用来保存对应的数据量
  • 计算完成之后的数据清理,按照时间进度注册定时器清理

广告数据

case class AdData(id:Int,devId:String,time:Long)

分组数据


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知无(import_bigdata)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值