深度学习中的概念

本文深入解析了目标检测领域的关键技术,包括交并比(IOU)的定义及其在衡量定位精度中的应用,YOLU算法如何通过网格化图像提高检测速度,以及非最大值抑制技术如何确保每个对象仅被检测一次,避免重复。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

IOU

交并比函数:实际物体框与算法检测物体狂的交集大小与并集大小的比值,用来目标衡量定位的精准度 。一般大于0.5为正确。

YOLU

 将图片分成多个小格,分别判断每个小格中是否有目标,算法速度较快。

非最大值抑制

保证算法对每个对象只检测一次。

实现方法:找出IOU最高的一个框,并将与这个框重合率高且IOU值较高的框抑制,。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值